Status of the IR Magnet System Design

John T. Seeman SLAC National Accelerator Laboratory January 31, 2024 Annecy FCCee Physics Workshop

SLAC

FCCee IR Status: Magnets Cryostats Vacuum system (+Diagnostics)

Comparisons to SuperKEKB (ongoing) Comparisons to CEPC (TDR in December 2023) Comparisons to ILC (TDR in 2013)

Tasks for 2024

Thank you for help from:

P. Borges de Sousa, M. Boscolo, S. DeBarger, A. Foussat, M. Koratzinos, N. Ohuchi, B. Parker, M. Sullivan, F. Zimmermann, P. Raimondi, ...

FCCee IR magnet longitudinal locations, lengths, and strengths (K. Oide)

SLAC

Present separation of QC1 to QC2 is 30 cm. New Raimondi lattice has separation at 1.5 m.

quads	L (m)	s (near)	s (far)	B' @Z(T/m)	B' @tt(T/m)
QC2L2	1.25	-7.190225	-8.440225	14.714061	62.103023
QC2L1	1.25	-5.860225	-7.110225	16.568025	41.767626
QC1L3	1.25	-4.310225	-5.560225	-18.109897	-99.714408
QC1L2	1.25	-2.980225	-4.230225	-24.629491	-88.924038
QC1L1	0.7	-2.200225	-2.900225	-43.72333	-96.796669
QC1R1	0.7	2.200225	2.900225	-43.72333	-96.796669
QC1R2	1.25	2.980225	4.230225	-30.963853	-97.183137
QC1R3	1.25	4.310225	5.560225	-15.401024	-82.712171
QC2R1	1.25	5.860225	7.110225	41.716447	17.331058
QC2R2	1.25	7.190225	8.440225	2.96821	62.122116

Z: FCCee_z_575_nosol_5_bb.sad tt: FCCee_t_572_nosol.sad

K. Oide 27 Sep 2023

3

K. Oide is available to discussion any needed changes. P. Raimondi's lattice has more space from QC1 to QC2.

FCCee magnet raft and cryostat

FCCee IR SC CCT magnet QC1 tests (Fall 2023) (M. Koratzinos ...)

The test at SM18

- Cryostat supporting 1.9K superfluid helium
- Training campaign
- Measurement of splice resistance
- Measurement of <u>quenchback</u>
- Measurement of RRR

M. Koratzinos

SC CCT QC1 quadrupole field measurements (M. Koratzinos ...)

Field quality - cold

- Work under way, but already <1unit for all multipoles
- We did not do the same trick during cold measurements
- The 'warm' measurements below come from the unrotated data

FCCee IR Cryostat (preferred option):

IR QC1 and QC2 in different cryostats but one integrated raft (not to scale)

Need to make space for cryogens, leads, and cantilever supports.

Second option: IR QC1 and QC2 in one cryostat and raft (not to scale).

CEPC has adopted this option (Dec 2023).

Needed functions for the space between QC1 and QC2

- 1) Beam pipes
- 2) e+ and e- BPMs
- 3) Cantilevered support(s)
- 4) Vibration mitigation and control
- 5) Two cryostat end caps
- 6) Cryogenic ports and disconnects
- 7) Magnet leads
- 8) Alignment
- 9) Instrumentation
- 10) Remote operation flange controls and access
- 11) Vacuum disconnects
- 12) Assembly strategy
- 13) Diagnostic and detector cable routes.

Some cryo-stat dimensions

M. Koratzinos, M. Boscolo,

IR Magnet Cross Section View (front and end of each magnet)

Showing separated heat shield and vacuum vessel.

Cryostat He walls And heat shield walls

Beam vacuum walls

Beam centroids

QC1R1

For magnets where there is no room for magnetic yoke material between the coils, the only practical solution is to use flexibility of CCT (double helical) to make local compensation of the magnetic cross talk between side-by-side quadrupole apertures.

J. Seeman Nov 4, 2023

Magnet coils

support

Cryostat outer

Tentative radial build for the QC1 assembly

Option I – common He space for all magnets

Presently **all dimensions are arbitrary** and for illustration of the cryostat structure only!

Common He space for both screening solenoid and quadrupoles

Annular space (5+1+5=11 mm) reserved between beam pipe assembly and quadrupole mandrel for vacuum insulation + thermal shield

"Quadrupole mandrel" is also He pressure vessel inner boundary

Screening solenoid supported by mandrel that can be perforated for He passage

Vacuum insulation + **thermal shield** between cold mass and cryostat vessel

Proposed x-section of QC1 cryostat at arbitrary length (dimensions are **arbitrary**)

IR cryostat component dimensions

10	Solenoid axis line
11	
12	Support shim thickness
13	Trim coil thickness
14	Magnet coil thickness
15	Support shim thickness
16	He vessel thickness
17	Insulating vacuum thickness
18	Heat shield (~50K)
19	Insulating vacuum thickness
20	Vacuum vessel thickness
21	Air gap
22	Outer beam pipe thickness
23	Water cooling layer for pipe
24	Inner beam pipe thickness
25	Inner vacuum wall to beam
26	Beam center
27	Sum: solenoid axis to beam
28	
29	Beam location (15 mrad)

	29	Beam location (15 mrad)
	30	
	31	Beam center
	32	Outer vacuum beam to wall
-	33	Inner beam pipe thickness
	34	Water cooling layer for pipe
	35	Outer beam pipe thickness
ł	36	Air gap
-1	37	Vacuum vessel thickness
	38	Insulating vacuum thickness
	39	Heat shield (~50K)
	40	Insulating vacuum thickness
	41	He vessel thickness
	42	Support shim thickness
	43	Magnet coil thickness
	44	Trim coil thickness
	45	Support shim thickness
	46	Anti-solenoid support
	47	Anti-solenoid coil thickness
L	48	Large spacer
¢	49	Shim thickness
	50	He vessel thickness
	51	Insulating vacuum thickness
	52	Vacuum vessel thickness
L	53	Copper shielding thickness
	54	Support rod gap
	55	External support thickness
	56	Sum: beam center to outside
	57	
	58	Overall sum
	59	
	60	Dectector stay clear (100 mrad)

Radial distances from Detector Solenoid axis to Beam axis for QC1A/B

All dimensions are in mm.						
	CS1	CS1	CS1	CS1	CS1	CS1
Magnet and location:	QC1L1	QC1L1	QC1L1	QC1L1	QC1L2	QC1L2
	Inner	Inner	Inner	Outer	Inner	Outer
Numbers from:	MK1	MK2	JSee	JSee	JSee	JSee
7.1.0.004	2200	2200	2200	2000	2000	4220
2 Location	2200	2200	2200	2900	2980	4230
Detector solenoid central axis line	0	0	0	0	0	0
Support shim/space thickness	1	0	1	12	13	32
Trim coil thickness	0	0	2	2	2	2
Magnet coil thickness	12	12	12	12	12	2
Support shim thickness	0	0	1	1	1	1
He vessel thickness	0.5	1	2	2	2	2
Insulating vacuum thickness #2	1.5	2	1.5	1.5	1.5	1.5
Thermal shield (50 k)	0	0	0.5	0.5	0.5	0.5
Insulating vacuum thickness #1	0	0	1.5	1.5	1.5	1.5
Vacuum vessel thickness	1	1	2	2	2	2
Air gap	0	0	1.5	1.5	1.5	1.5
Outer beam pipe thickness	0	0	1	1	1	1
Water cooling layer for pipe	1	1	1	1	1	1
Inner beam pipe thickness	1	1	1.5	1.5	1.5	1.5
Inner vacuum wall to beam	15	15	15	15	15	15
Sum: Det solenoid axis to beam center	33	33	43.5	54.5	55.5	64.5

-SLAC

Radial distances from beam location to outer cryostat wall at QC1A/B

Beam location (15 mrad)	33	33	33	43.5	44.7	63.45
Outer vacuum beam to wall	15	15	 15	15	15	15
Inner beam pipe thickness	1	1	 1.5	1.5	1.5	1.5
Water cooling layer for pipe	1	1	 1	1	1	1
Outer beam pipe thickness	0	0	 1	1	1	1
Air gap	0	0	1.5	1.5	1.5	1.5
Vacuum vessel thickness	1	1	3	3	3	3
Insulating vacuum thickness #2	1.5	2	3	3	3	3
Thermal shield (50 k)	1.5	2	0.5	0.5	0.5	0.5
Insulating vacuum thickness #1	1.5	2	3	3	3	3
He vessel thickness	0.5	1	2	2	2	2
Support shim thickness	0	0	1	1	1	1
Magnet coil thickness	12	12	12	12	12	12
Trim coil thickness	0	0	2	2	2	2
Support shim thickness	0	0	5	5	5	5
Skeleton support thickness	119	117	60	49	48	39
Anti-solenoid support	10	10	20	20	20	20
Anti-solenoid coil thickness	10	10	15	15	15	15
Shim thickness	0	0	2	2	2	2
He vessel thickness	2	2	5	5	5	5
Insulating vacuum thickness	4	4	4	4	4	4
Vacuum vessel thickness	5	5	5	5	5	5
Allowed outer rod support connector	0	0	10	10	10	10
Copper shielding thickness	2	2	2	2	2	2
Sum: beam center to outside	187	187	174.5	163.5	162.5	153.5
Overall sum (Det axis to outer wall)	220	220	218	218	218	218
Dectector stay clear (100 mrad)	220	220	220	290	298	423

15

-SLAC

First look at IR accelerator 1.9 deg cryo-plant (P. Borges de Sousa...)

(possible) PFD for He II cooling Adapted from HL-LHC D2 magnet

Cryogenic Header F (23 bar, 60 K distribution Header B (15 mbar, 4 K Shown: Header D (1.3 bar, 20 K) Line Header C (4 bar, 4.6 K) Cryogenic distribution line (top) • (HL-LHC type) Jumper connection (middle) IR magnets (bottom) Considered inner triplets cooled via He II Cryogenic distribution pressurised/He II saturated HEX line limit Considered solenoids and quadrupoles in the same bath Thermal shields can use a 40 K - 60 K circuit as in HL-LHC or could potentially be cooled by **IR** magnets conduction only from the jumper He II HX Towards IP cryostat into the magnet cryostat (shown) Inner Thermal Shield \sim Outer Thermal Shield

24/01/2024 P

P. Borges de Sousa | Cryogenic approaches for SC magnets in the FCC-ee IRs

24

SLAC

Header E (24 bar 40 K

Inner He vessel in cryostat could crush if magnet quenches

Example at SLAC of thin-walled water chamber:

Water pump pulled ~1 Bar pressure on water tank at SLAC causing it to crush.

Radial external pressure with fixed edges.

Options to make the QC1/QC2 radial and longitudinal space issues more conservative

A) Keep layout as in present optical lattice and present cryostat design

Beam pipe "welded" into cryostat as the inner wall. (Solve vacuum design issues) Likely increases the cryogenic heat load.

B) Keep the IP crossing angle the same and move magnets outward (~0.8 m)

Move QC1 away from IP about 0.8 m. (2.2 m to 3.0m) Move QC2 away from IP about (0.8 +1.2 =) 2.0 m. (5.86 m to 7.86 m) Minimum betay* increases a little.

C) Increase full crossing angle from 30 mrad to 40 mrad:

Move QC1 away from IP about 0.03 m. (2.2 m to 2.23 m) (add a Lumi-Cal gap) Move QC2 away from IP about (0.03 +1.2 =) 1.23 m. (5.86 m to 7.09 m) Quadrupole strengths are reduced. Minimum betax* increases. Luminosity the same. Beam line components move transversely in the tunnel for both beams. Wider tunnel in some locations.

D) Reduce the field overhead in the SC magnet design (presently ~30%).

Saves radial space at QC1A/B/C. Reduces the magnet reliability.

SuperKEKB IR Cryostats

Figure 11: QCSL/R cryostats and Belle-II detector in IR.

Overall SuperKEKB IR Layout

Figure 1:. SuperKEKB IR layout inside Belle-II with high energy, e⁻, (HER) and low energy, e⁺, (LER) rings indicated.

SuperKEKB IR Cryostat

Magnets are mechanically supported by the cryostat components in the helium vessel.

Helium vessels are supported by the rods (Ti alloy) from vacuum vessel.

Eight rods per cryostat

⁽N. Ohuchi)

KEKB Cryo-plant Layout

He refrigerator He refrigerator for QCS-R for QCS-L LHe sub-cooler LHe sub-cooler -30.00 and 4 0.0 Detector Center Cryogenic Pipe Cryogenic Pipe (To QCS-R He Refrigerator)-- (To QCS-L He Refrigerator) Belle II Particle Detector QCS-L Service Cryostat QCS-R Service Cryostat Interaction Point To be owned 6+ QCS-R Cryostat SXXXIII IIN QCS-I Cryostat Detector S.C. Solenoid 2 3 4 5 6 7 (m) -7(m)-6 -5 -4 -3 -2 -1 0

CEPC IR magnets and cryostats (Dec 2023)

Yoke HCAL Detector Solenoid ECAL Drift Chamber Tracker 000 STREET STREET 100 100 100 Vacuum chamber Q1b Q1a Q2 700 700 Lumical crystal Accelerator cryostat Cryostat support 940 886 Tungsten shielding IP BPM 916 1132 RVC 1290 1290 1854 1590 21511120 14000

Fig 4.2.6.1: CEPC MDI layout.

Ouedrunele	I. [m]	Distance from	Strength [T/m]				
Quadrupole	$\frac{L[m]}{IP[m]} = t\bar{t} Higgs$		Higgs	W	Z		
Q1AIRU	1.21	1.9	-141	-141	-94	-110	
Q1BIRU	1.21	3.19	-59	-85	-56	+65	
Q2IRU	1.5	4.7	-51	+95	+63	0	
Q3IRU	3	7.2	+40	0	0	0	
Q1AIRD	1.21	-1.9	-142	-142	-95	-110	
Q1BIRD	1.21	-3.19	-64	-85	-57	+65	
Q2IRD	1.5	-4.7	-47	+96	+64	0	
Q3IRD	3	-7.2	+40	0	0	0	

Table 4.2.1.2: The length and strength of the final quadrupoles for the compatible modes.

CEPC IR 6.8 m cryostat (Dec 2023)

CEPC IR cryostat details (Dec 2023)

Figure 7.1.36: Mechanical design of the MDI cryostat.

CEPC: Iron shields around QC1a for cross-beam field reduction

ILC IR magnet locations (2013)

ILC IR magnets (2013)

ILC cryostat details (B. Parker et al)

QDEX1 Main & Shield Coils

The QD0 Magnet Grouping shown with a Force Neutral Anti-Solenoid in a QD0 Common Cryostat.

SD0/OC0 Coils

& Shield Coils

Comparisons of IR features for FCCee, CEPC, ILC, SuperKEKB

Machine		FCCee	CEPC	ILC	SuperKEKB
Crossing-angle	mrad	30	33	14	83
L*	m	2.2	1.9	3.5	0.935
Vertical β_y^* at IP	mm	0.7-1.6	0.9-2.7	0.4	0.3
Detector soln field	Т	2/3	3	3.5/5	1.5
Detector stay clear	mrad	100	118/141	90	350/436
Two beam ΔX at L*	mm	66	62.7	49	77.6
He temperature	K	1.9	4.2	4.5	4.5

Suggested goals for FCCee MDI and IR magnets for 2024

- 1) Full list of magnet, vacuum, and cryogenic specifications
- 2) Make initial cryostat design (4 or 7 m) by cryogenic/mechanical engineer(s)
- 3) Make initial layout of magnet/cryogenic splice box
- 4) Resolve Raimondi's new IR lattice vs present
- 5) Converge on Q1 to Q2 longitudinal separation
- 6) Construct a left+right CCT magnet pair for QC1
- 7) Carry out warm test of CCT quadrupole for reduced left-right field cross-talk
- 8) Answer if IR magnets need higher-order trim coils
- 9) Design remote vacuum flanges (need 6 flanges with 2 designs)
- 10) Converge on background mask geometry
- 11) Confirm 100 mrad detector-accelerator cone angle
- 12) Decide on a W, Ta, or Cu background shield around cryostat (1 cm?)

Thank you for your attention!

Again, thanks to many people for their inputs!