

STATUS OF FCC-EE BEAM-BEAM STUDIES

Peter Kicsiny, X. Buffat, G. Iadarola, D. Schulte, T. Pieloni, M. Seidel

Special thanks to: H. Burkhardt, F. Carlier, M. Hofer, K. Oide, L. van Riesen-Haupt, D. Shatilov, D. Zhou

> FCC Physics Workshop 2024 29/01-02/02/2024

Outline

1. FCC-ee beam-beam effects

2. 3D flip-flop instability

3. Bhabha scattering

4. Summary

Outline

Beam-beam interaction

- Beam = EM potential for all other charges
- Beam acts with a force on other beam
 - Nonlinear beam-beam kick
 - Linear strength characterized by beam-beam parameter $\boldsymbol{\xi}$
 - Harmful consequences on beam dynamics
 - No theory, simulations have to be used

$$\xi_{x,y} = \frac{Nr_0\beta_{x,y}^*}{2\pi\gamma\sigma_{x,y}(\sigma_x + \sigma_y)}$$

3

particle losses

Beam-beam effects in FCC-ee

Incoherent

- **Radiative Bhabha** scattering
- Deflection in field of single particle of opposite bunch

Collective

- Beamstrahlung
 - Deflection in collective field of opposite bunch

Radiation

f-quad

Beam-beam effects in FCC-ee

- 1. Top-up injection scheme [1]
 - Continuous injection of new bunches
 - Maintains luminosity levels & compensates for decreased beam lifetime

- 2. Large Piwinski angle + crab waist scheme [2]
 - Small beam size
 - Crossing angle
 - Crab sextupoles

compensation

kicker

injected beam multipole

kicker

Outline

1. FCC-ee beam-beam effects

2. 3D flip-flop instability

3. Bhabha scattering

4. Summary

Outline

○ FCC 31 / 01 / 2024 | FCC Physics Workshop 2024

• 3D flip-flop

Flip-flop

- Flip-flop instability (1D) observed in other colliders (VEPP-2000) [3]
- For FCC-ee: 3D flip-flop direct consequence of beamstrahlung, triggered by an initial asymmetry in bunch intensity [4]

- Inflation of one bunch
- ch **may** beam loss
- Above a threshold ξ_0 longitudinal blowup drives transverse diffusion
- Relevant for FCC-ee top-up injection

○ FCC 31 / 01 / 2024 | FCC Physics Workshop 2024

3D flip-flop

- Scanned asymmetry in bunch intensity: $N_{w,s} = N_0 \cdot (1 \pm \Delta N)$ ($\Delta N \in [0,1]$)
- Observed expected blowup of weak bunch

31 / 01 / 2024 | FCC Physics Workshop 2024 ○ FCC

3D flip-flop instability

3D flip-flop – comparison to a 1D model

- Analytical model to estimate blowup [5]
- 1D model does not take into account nonlinear diffusion at high asymmetries
- 3D model includes diffusion in a phenomenological way

○ FCC 31 / 01 / 2024 | FCC Physics Workshop 2024

3D flip-flop instability

3D flip-flop – blowup at small asymmetries

- 3D model for W
- 1D model for Z, H, ttbar
- Good overall agreement
- Top-up injection simulation ongoing

Outline

1. FCC-ee beam-beam effects

2. 3D flip-flop instability

3. Bhabha scattering

4. Summary

Outline

Bhabha scattering – Cross section

- Event generator adapted from GUINEA-PIG [6]
- Method of equivalent photons:
 - 1. Generate virtual photons of beam 1 slice
 - 2. Compton scatter virtual photons on beam 2 macroparticle
- Bhabha cross section from single collision: count emitted photons above mom. acceptance (1-2%, from [7] & [8])

Bhabha scattering - Luminosity

- Comparison of luminosity in GUINEA-PIG and Xsuite
- PIC vs soft-Gaussian
- Xsuite WS to GUINEA-PIG: ~10% less lumi
- Xsuite SS to GUINEA-PIG: ~5% less lumi, except Z where soft Gaussian is the least accurate

○ FCC 31 / 01 / 2024 | FCC Physics Workshop 2024

Bhabha scattering

Outline

1. FCC-ee beam-beam effects

2. 3D flip-flop instablity

3. Bhabha scattering

Outline

Summary

3D flip-flop

- Good agreement with analytical model for small asymmetries
- Longitudinal top-up injection studies ongoing

Bhabha lifetimes

- Successful benchmarks:
 - Xsuite with BBBREM & GUINEA-PIG
 - Lifetimes using linear tracking + hard edge acceptance
- Can be used in other types of studies (MDI & collimation)
- In progress: lifetimes from tracking in nonlinear lattice

Thank you!

This work was performed under the auspices and with support from the Swiss Accelerator Research and Technology (CHART) program.

References

[1] Y. Dutheil, Top-up injection baseline scenario https://indico.cern.ch/event/1202105/contributions/5383638/attachments/2659520/4609063/2023_06 FCCweek topup injection scheme.pdf

[2] M. Zobov, Crab Waist collision scheme: a novel approach for particle colliders https://iopscience.iop.org/article/10.1088/1742-6596/747/1/012090/pdf

[3] D. Shwartz et al., Recent Beam-Beam Effects at VEPP-2000 and VEPP-4M arXiv:1409.5590

[4] D. Shatilov, Beam-beam Effects at High Energy e⁺e⁻ Colliders <u>https://doi.org/10.18429/JACoW-eeFACT2018-TUYBA02</u>

[5] K. Le Nguyen Nguyen, Analytical Description of the Impact of Intensity Asymmetry in Colliders with Strong Beamstrahlung https://indico.cern.ch/event/1193165/contributions/5015797

[6] GUINEA-PIG https://gitlab.cern.ch/clic-software/guinea-pig-legacy

[7] K. Oide, FCC-ee Collider Optics https://indico.cern.ch/event/1202105/contributions/5408583/attachments/2659051/4608141/FCCWeek_Optics_Oide_230606.pdf

[8] Future Circular Collider Conceptual Design Report Volume 2 https://cds.cern.ch/record/2651299/files/CERN-ACC-2018-0057.pdf

BACKUP

Simulation parameters

Slide #	7, 8 & 9	10
FCC-ee setup	Z (CDR, 2 IP)	Z / W / H / T (4 IP)
Beam-beam model	quasi-strong-strong (f _{update} =100)	quasi-strong-strong (f _{update} =100)
# slices in beam-beam	300	100 (300 for Z)
# macroparticles	1e7	1e5
# turns	2.5e4	2e4 / 1e4 / 5e3 / 5e3

3D flip-flop – luminosity

3D flip-flop – strong bunch

- Scanned asymmetry in bunch intensity: $N_{w,s} = N_0 \cdot (1 \pm \Delta N)$ ($\Delta N \in [0,1]$)
- Strong bunch shrinks

Analytical approximation of bending radius [1]

• Local curvature of a particle in the weak bunch, flat beam approximation, due to transverse electric field from strong bunch:

[1] M.A.Valdivia Garcia, F. Zimmermann https://cds.cern.ch/record/2702811

Emittance scan results

FCC H FCC T $N_m = 1.00e + 03$, $N_t = 1.00e + 03$ $N_m = 1.00e + 03$, $N_t = 1.00e + 03$ $\epsilon_{v,0}$: only lattice **-**Oide $\epsilon_{v,bb}$: with beam-1.5 $\epsilon_{y, target}$ [md] ^{1.0} beam+beamstrahlung ε_{y, bb} [pm] ÷ Xsuite Oide 0.5 ε_{y, target} Black: tracked results Xsuite + with Xsuite 0.2 0.4 0.6 0.8 1.0 1.2 0.5 1.0 1.5 2.0 ε_{v.0} [pm] $\varepsilon_{v,0}$ [pm] Pink: ε_v "target" from FCC W FCC Z parameter table $N_m = 1.00e + 03, N_t = 4.00e + 03$ $N_m = 1.00e + 03$, $N_t = 1.00e + 04$ (~desired max. ε_v with beam-beam) [1] 3 .≓‡ 1.5 ε_{y, bb} [pm] δ Orange: data provided E_{y, bb} [pm] by K. Oide 1.0 Oide Oide $\epsilon_{y, target}$ $\epsilon_{y, target}$ 0.5 Xsuite + Xsuite ++-0.5 2.0 1.0 1.5 0.2 0.4 0.6 0.8

ε_{y,0} [pm]

1.0

ε_{y,0} [pm]

Workflow – everything in Xsuite

Prepare Xtrack line once [6]:

load MAD-X sequence [7]	
add wigglers	
convert to Xtrack line	
build + twiss 4D	
slice sequence	
build + twiss 4D	
save Xtrack line	

Loop over a range of ε_{y} values:

load Xtrack line	:
add observation point @ RF	add beam-beam element (optional)
build + twiss 4D	build
twiss 6D mean synrad + tapering	set quantum synrad
match ε_v	track
twiss 6D mean synrad + tapering	repeat with next $\boldsymbol{\epsilon}_{y}$
_	

ŝ,

Emittance scan results

- Small discrepancy compared to SAD results
- Xsuite likely not yet converged
- Need more turns to see converged emittances

Bhabha lifetimes

- Linear lattice
- Hard edge momentum acceptance

Bhabha lifetimes

$$\frac{1}{\tau} = \frac{1}{N_b} \frac{dN_b}{dt} = \frac{1}{N_b} \sigma_{Bhabha} L_{inst} \cdot N_{IP} = \frac{1}{N_b} R_b \cdot f_{rev} \cdot N_{IP}$$

- T: Bhabha lifetime [s]
- N_b: bunch intensity [1]
- σ_{Bhabha}: Bhabha cross section [m^2]
- N_{IP}: number of lps [1]
- L_{inst}=L*f_{rev}: instantaneous lumi of 1 bunch crossing [m^-2 s^-1]
- L: integrated lumi of a single collision (collision luminosity) [m^-2]
- f_{rev}: revolution frequency [s^-1]
- $R_b = \sigma_{Bhabha}^*L$: number of emitted Bhabha photons with E above mom. acceptance [1]