ALLEGRO: data rates / DAQ

Nicolas **Morange**, *IJCLab* FCC Physics workshop, 01/02/2024

Laboratoire de Physique des 2 Infinis

Introduction: the ALLEGRO detector concept

A concept still in its infancy

- Trackers: assume similar structure as IDEA, because of its superb expected performance
 - 5 MAPS layers for vertex detector
 - Drift chamber (112 layers)
 - Slightly longer, e.g 5m
 - Numbers shown here are the same as Franco's
- ECAL: Noble liquid technology
 - Inside super transparent CF cryostat
- 2T solenoid after ECAL, in same cryostat
- HCAL: baseline is "Tile" calorimeter
- Simple muon tagger (not planning for standalone measurements)

Introduction: how to compute expected rates?

2111.04168

Beam induced backgrounds

See talk by Manuela Boscolo

Luminosity induced backgrounds Radiative Bhabha Beamstrahlung: photons and spent beam Incoherent/ Coherent e ⁺ e ⁻ Pair Creatic γγ to hadrons			Synchronous with the interaction, can be discriminated at trigger level
	Dominant effect		
Single Beam effects Synchrotron Radiation Beam-gas Thermal photons Touschek Injection backgrounds	Dominant effect (a	priori) wostly ca except fo	an be mitigated with collimators & shieldings, or those produced just in the IR
	For the feasibility study the single beam effects was tackled starting from developing a new code for particle tracking and study the halo beam , with an LHC-like approach. A collimation region was implemented for halo beam.		

BIB: dependent on MDI design

Ref: M. Boscolo, F. Palla, et al., Mechanical model for the FCC-ee MDI, EPJ+ Techn. and Instr., https://doi.org/10.1140/epjti/s40485-023-00103-7

- Simulate the various processes
- Integrate over detector readout times
- Compute occupancies
- Then convert into rates

Vertex detector

Studied in details for CLD so far

Incoherent Pair Production

- Occupancy/BX increases with \sqrt{s}
- Overall occupancy (assume conservative 10µs integration):
 - 2-3% in VXD at the Z pole
- Translation into rates:
 - See Franco's talk for details !
 - Untriggered readout seems difficult

Landau-Lifshitz

Drift chamber

IDEA Drift chamber simulation in progress...

• Basic numbers:

- 56000 drift cells in 112 layers
- Drift time ~400ns
- Signal digitization with 2GHz digitizer

• Unfiltered rates:

- See Franco's slides for details
- ~500 GB/s

• Mitigation:

- Assume on-detector cluster finding
 - Amplitude and time of peaks
- ~50 GB/s, dominated by Z physics
- Can we store this on disk?

ALLEGRO Ecal

Work ongoing.

• Strategy is clear:

- Simulate events in one BX
- Collect distributions as function of (r, θ)
- Integrate over 400ns (very conservative)
- Use threshold like MIP/5 for zero-suppression
- Compute occupancy
- Translate into rates

Backgrounds

• Simulations ongoing

ALLEGRO Ecal

Physics at Z pole

- Detailed simulations to be done
- Crude estimate
 - Assume zero-suppression well above electronics noise
 - 20 showers / event for Z or $\gamma\gamma \rightarrow$ hadrons
 - 2 showers / event for Bhabha
 - 500 cells / shower (typical of a 25 GeV γ shower... so probably conservative)
 - 2B energy + 1B timing + 3B cellID
 - Grand total 8GB/s
 - > Easy to deal with

3B for ID to write on tape Only 1B needed to readout multiplexed signals from frontend to backend FCC Physics Workshop, 01/02/2024

ALLEGRO HCAL

Nothing started yet

- Backgrounds probably negligible
- Z pole physics: simulations to be done
 - Certainly very manageable rates

Muon tagger

Nothing...

- Should get estimates of cavern backgrounds
- How do we get that ?

Luminometer

See <u>Mogen's talk</u>

Source	Cross section / rate	Energy
$\mu^{*}\mu^{*}$ (possibly valuable for alignment)	10 Hz	Deposit: 0.25 GeV equivalent
Bhabha	40 nb / 70 kHz	45.6 GeV
Single arm Bhabha (E>0.1 × E_{BEAM})	40 nb / 70 kHz (single arm)	5 - 45.6 GeV (peaking low)
 Beam-beam interaction e⁺e⁻ pairs 	100 kHz (single arm)	~ 5 GeV
Bhabha scattered from Manifold	1100 kHz (mainly double arm)	o-7 GeV

- Seems we cannot push out all active channels, i.e. all channels above mip threshold (60 keV deposited) in all bunch crossings
- Probably need some kind of local trigger, e.g.
 - □ Analog sum in depth of e.g. 3 x 8-9 layers with some φ segmention
 - From fast shaped analog sum signals, take local decision per LumiCal on readout
 - Energy threshold for Bhabha
 - * Depth requirement for muons
- Slower (more precise/less power hungry) shaping of the full set of channels
 - On local trigger accept, digitize and read out all channels (w. zero suppression)

Conclusions

• This is just the start... lots of work ahead

Vertex detector

- For sure need some filtering before writing to tape
- Probably some trigger needed to readout the detector ?

• Drift chamber

- Readout manageable
- Probably filtering needed before writing out to tape

Calorimeters

- Z rates under control
- Background rates to be evaluated

Muon tagger

• To be done... where to start ?