IDEA TDAQ

F. Bedeschi, INFN – Pisa,

FCC Physics Workshop,

Annecy, France, 29/1 - 2/2/2024

IDEA detector
Throughput estimates
Conclusions

Detector concept IDEA

- Si pixel vertex detector
 - 5 MAPS layers
 - R = 1.2 34 cm
- Drift chamber (112 layers)
 - > 4m long, r = 35 200 cm
- Si wrapper: strips
- Solenoid: 2 T 5 m, r = 2.1-2.4
 - 0.74 X₀, 0.16 λ @ 90°
- Pre-shower: μRwell (if no crystals)
- Dual Readout calorimetry
 - \triangleright 2m deep/8 λ
- Crystal calorimeter inside
- Muon chambers
 - ▶ µRwell

Vertex detector

4

INF

4

FCC Physics week, Annecy 2024

INF

4

FCC Physics week, Annecy 2024

INF

4

INF

FCC Physics week, Annecy 2024

5

5

FCC Physics week, Annecy 2024

5

FCC Physics week, Annecy 2024

IN

F

5

FCC Physics week, Annecy 2024

IN

F

Silicon occupancy summary

Max occupancy in inner VTX barrel layer same as CLD

		Z	WW	ZH	tī
ns	average bunch spacing	30	345	1225	7598
10^{-3}	$O_{max}(VXD), RW=1 \mu s$	2.33	0.81	0.05	0.18
10^{-3}	$O_{max}(VXD)$, RW=10 µs	23.3	8.12	3.34	1.51

Assume <cluster size> = 3, safety factor 5

• Occupancy scales with pixel area \rightarrow better with smaller area

But Nr of pixels fired (ie. data volume) does not change much

Physics signals give negligible contribution to occupancy

Nr. Bunch crossings in 10 μs window

Ζ	WW	ZH	tt
329	29	8.2	1.3

Can recover large factors by using only correct BX

External trigger or downstream selection (for Pat. Rec.)

FCC Physics week, Annecy 2024

Silicon data volume

Pixels to read out for ARCADIA L1 (15 staves x 6 modules x 2 chips x 640 x256 pixels)

► Z	WW	ZH	tt		
▶ 7.6	2.7	1.1	0.5	x10 ³	in 10 µsec window/2-chip module
> 23.2	91.8	133.5	380.6		per bunch crossing/2-chip modeule

Assuming 32 bits/pixel including time stamp/2-chip module

> 24.4	8.5	3.5	1.6	Gbit/s	Not triggered
> 149	N/A	N/A	N/A	Mbit/s	triggered

200 kHz trigger rate

Total layer 1:

■ 2.2 Tbit/sec (NoTrigger) → 13.4 Gbit/sec (Triggered) at Z pole → port card transmission needs 1.1 Tbit or 7 Gbit/s/side

Other layers and disks have lower data volumes

Layer 2 has ~10x less data volume

Current ARCADIA

• Max readout speed achievable on chip 100^{-200} MHz x 32 bits? \rightarrow 3.2 - 6.4 Gbit/sec

Untriggered operation looks difficult

FCC Physics week, Annecy 2024

7

Drift chamber basic assumptions

- Educated guess simulations in progress
- 91 GeV c.m. energy
 - 200 KHz trigger rate
 - 100 KHz Z decays
 - 30 KHz $\gamma\gamma \rightarrow$ hadrons
 - 50 KHz Bhabha
 - 20 KHz noise/bck

- drift cells: 56,000 , layers: 112
- \Rightarrow max drift time (≈ 1 cm): 400 ns
- cluster density: 20/cm
- signal digitization:
 - 12 bits at 2×10^9 bytes/s
 - 2 GHz digitizer

DCH: Unfiltered data rate

✤Z decays:

▶ 10⁵ ev/s × 20 tracks/ev × 112 cells/track × 4×10⁻⁷ s × 2×10⁹ Bytes/cell/s \cong 179 GB/s

$\diamond \gamma \gamma \rightarrow$ hadrons:

 $> 3 \times 10^4 \text{ ev/s} \times 10 \text{ tracks/ev} \times 112 \text{ cells/track} \times 4 \times 10^{-7} \text{ s} \times 2 \times 10^9 \text{ Bytes/cell/s} \cong 27 \text{ GB/s}$

Bhabha:

 $> 5 \times 10^4 \text{ ev/s} \times 2 \text{ tracks/ev} \times 112 \text{ cells/track} \times 4 \times 10^{-7} \text{ s} \times 2 \times 10^9 \text{ Bytes/cell/s} \cong 9 \text{ GB/s}$

Noise (assume 2.5% occupancy):

 $\ge 2 \times 10^4 \text{ ev/s} \times 1.5 \times 10^3 \text{ cells/ev} \times 4 \times 10^{-7} \text{ s} \times 2 \times 10^9 \text{ Bytes/cell/s} \cong 24 \text{ GB/s}$

< 1 TB/s with safety factors

Total unfiltered rate (read both ends): 2 x 239 = 478 GB/s

DCH: after cluster finding

Assume on-board cluster finding and reading out only peaks (assume 2.5 peaks/cluster)

- Readout amplitude and time of peak (2 Bytes)
- Z decays:
 - > $10^5 \text{ ev/s} \times 20 \text{ tracks/ev} \times 112 \text{ cells/track} \times 50 \text{ peaks/cell} \times 2 \text{ Bytes/peak} \cong 22 \text{ GB/s}$
- ♦ $\gamma\gamma$ → hadrons:
 - → 3×10^4 ev/s × 10 tracks/ev × 112 cells/track × 50 peaks/cell × 2 Bytes/peak \cong 3 GB/s
- Bhabha:
 - > 5×10^4 ev/s $\times 2$ tracks/ev $\times 112$ cells/track $\times 50$ peaks/cell $\times 2$ Bytes/peak $\cong 1$ GB/s
- Noise (assume filtered by clustering algo)0 GB

Total filtered rate (read both ends): $2 \times 27 = 54 \text{ GB/s}$

 $\approx 100 \text{ GB/s}$ with safety factors

DR fiber calorimeter signal

Assumed readout configuration:

- \blacktriangleright Nr. of SiPM = 130 M
- \blacktriangleright Likely grouping by 8 \rightarrow 16.3 M channels
 - With 0 suppression
- Readout: Q_T, ToA, ToT, TPk, VPk, Channel Identifier
 Assume 16 Bytes

♦Z→jj

- → ~ 6000 fibers fired \rightarrow ~ 100 kB/ev
- > 100 kHz physics rate \rightarrow ~ 10 GB/s NO grouping

NB. # Fibers reduced by x2-3 if crystals in front

DR calorimeter DCR

250 GB/s

Assumptions:

- 200 kHz DCR /SiPM
- 250 nsec integration time

> Mean number of counts/SiPM μ = 0.05

Prob. >= 1 pe = 1-exp(- μ) = 4.9 % \rightarrow 6.4 M/ev x 100 kHz x 16 = 10.2 TB/s

Prob. >= 2 pe = $1 - \exp(-\mu) (1 + \mu) = 0.12 \%$

Prob. >= 3 pe = 1-exp(- μ) (1+ μ + $\mu^2/2$) = 0.002 % \rightarrow 2.6 k/ev « = 4.2 GB/s

Threshold at 2.5 pe used during recent test beams

Dark count could be a problem

> Thresholds and additional suppressions to be optmized (e.g. isolation, timing,)

 \rightarrow 156 k/ev

{{

Throughput crystal option

Single dijet event at √s=90 GeV (1x1 cm² crystal section)

▶ 510 active crystals with 10 MeV readout threshold
 →0.2 MIP in front crystal

→ ~220 active crystals with 30 MeV readout threshold \rightarrow 0.5MIP in front crystal

→ ~70 active crystals with 100 MeV readout threshold →~2MIPs in front crystal

4 Bytes/crystal + 2 Bytes for timing

< 10 kB /event \rightarrow total at 100 kHz trigger rate: <1GB/s

Dark count rate << MIP readout threshold

Luminometer

145 mm

135 mm

115 mm

Physics

- Bhabha + rad. Bhabha ~ 250 nb
- Total rate $\sim 500 \text{ kHz}$
- Additional contributions
 - \blacksquare $\gamma\gamma$, SR, beam halo, ...?

Detector

- 10 bit range needed
- 45 GeV e- \rightarrow 660 channels hit

Throughput

- 10 bit x 500 kHz x 660 ch x 2 (sides) = $6.6 \text{ Gbit/s} \sim 1 \text{ GB/s}$ data driven
- ◆ If all interactions have some signal Assume 500 ch total on average
 - 10 bit x 30 MHz x 500 ch = $150 \text{ Gbit/s} \sim 18 \text{ GB/s}$

Muon system

Detector Strip pitch		Area	Number of tiles	Strips per tile	Channels
	[mm]	$[m^2]$			[k]
Preshower	0.4	130	520	2500	1300
Muon detector	1.2	1525	6100	830	5060

Readout configuration

- ► 64 ch \rightarrow 1 TIGER chip
- ► 14 TIGER \rightarrow 1 FEB = 896 ch
 - I FEB/detector tile (50x50 cm²)
- ▶ 4 FEB (3584 ch) \rightarrow 1 GEMROC card

Physics signals

- 100 kHz Z (20 tracks/ev)
 - 3.3 kHz Z→μμ
- → 30 kHz $\gamma\gamma$ → hadrons (~10 tracks/ev)
- ➢ 3 stations of muons counters
- Cluster size 5 strips FCC Physics week, Annecy 2024

Muon detector throughput

- Each GEMROC packet contains:
 - > 272 bits for IP and UDP protocols, 193 bits for header and trailer, 64 bits for each hit
- For a track traversing all 3 stations of the muon detector:
 - 1 (track) x 3 (stations) x 2 (XY) x 5 (strips) x 64 bit/strip + 3 GEMROC x (193 + 272) bit/GEMROC = 3315 bits /track
- **Considering** a rate of 3.3 KHz of Z-> μ + μ events:
 - > 3315 bits x 3300 Hz x 2 (μ tracks) = ~22 Mbits/s ~3 MBytes/s

Current TIGER has no zero suppression: expect an electronic noise of ~kHz/ch

- 1 (strip) x 64 bit/strip x 5,060 k channels x 1 kHz ~40 Gbyte/s
- \blacktriangleright With an on-board suppression of a factor 100 \rightarrow data size ~400 Mbyte/s

Muon detector data size ~ 400 Mbytes/s Noise dominated!

Pre-shower throughput

- Each GEMROC packet contains:
 - > 272 bits for IP and UDP protocols, 193 bits for header and trailer, 64 bits for each hit
- For one track traversing the pre-shower detector:
 - 1 (track) x 1 (stations) x 2 (XY) x 5 (strips) x 64 bit/strip + 1 GEMROC x (193 + 272) bit/GEMROC = 1105 bits /track
- Considering a rate of 100 KHz (Z events) x 20 charged particles:
 - > 1105 x 2 x 10⁶ (events) = \sim 2 Gbits/s = 250 MBytes/s
- Considering a rate of 30 KHz (γγ events) x 10 charged particles:
 - > 1105 x 3 x 10⁵ (events) = ~ 0.3 Gbits/s = 40 MBytes/s
- From experience with the TIGER chips: electronic noise of ~kHz/ch
 - > 1 (strip) x 64 bit/strip x 1.3 x 10^6 channels x 1 kHz ~10 Gbyte/s
 - → With an on-board suppression of a factor 100 \rightarrow data size ~100 Mbyte/s

Pre-shower data size ~ 350 Mbytes/s Signal dominated

Comments/Questions

- Efficient on-board zero/noise suppression needed for many systems
- Data throughput looks manageable except pixel detector inner layer(s)
 - Trigger advisable for vertex pixel detector
- Timing and assigning data to bunch crossing?
- Is trigger calibration possible with 0 bias triggers?
 - E.g. trigger every pre-scaled number of beam crossings
- Which detectors provide the trigger and how?
- Can HLT handle the triggerless output?
 - How much data write out?

I

Additional Shides