Progress and Developments on the IDEA Drift Chamber

M. Primavera, INFN-Lecce On behalf of the IDEA DCH community

7th FCC Physics Workshop Laboratoire d'Annecy de Physique des Particules **29 January - 2 February 2024**

IDEA \rightarrow **Innovative Detector for Electron-positron Accelerators** (more details in the F. Bedeschi's talk

in this Workshop):

Vertex:

- 5 Monolitic silicon pixel (MAPS) layers
- R=1.2 34 cm

Drift chamber:

- 4 m long, R = 35-200 cm
- He-iC₄H₁₀ gas mixture
- All stereo wires
- Pld with Cluster counting technique

Si Wrapper:

 2 layers of μ-strips in both barrel and forward regions

Superconducting solenoid:

- 5 m long, R = 2.1-2.4, 2T B field
- Thin low-mass \rightarrow 0.74 X_0, 0.16 λ @ 90º

Pre-shower:

• 2 layers of µ-Rwell

Calorimetry :

- Dual readout calorimeter 2m deep/8 λ

Muon chambers:

3 μ-Rwell stations embedded in the magnet return yoke

2

Main features of DCH design

IDEA DCH designed to provide **efficient tracking**, **high precision momentum measurement and excellent particle identification** for particles of low and medium momenta. Main features:

- High granularity
- Transparency
- Cluster counting technique

Particle momentum range far from the asymptotic limit where MS is negligible

$$\frac{\Delta p_T}{p_T}|_{res.} \approx \frac{12 \sigma_{r\phi} p_T}{0.3 B_0 L_0^2} \sqrt{\frac{5}{N+5}}$$
$$\frac{\Delta p_T}{p_T}|_{m.s.} \approx \frac{0.0136 \,\text{GeV/c}}{0.3\beta B_0 L_0} \sqrt{\frac{d_{tot}}{X_0 \sin \theta}}$$

Drasal, Riegler, https://doi.org/10.1016/j.nima.2018.08.078

IDEA: Material vs. $cos(\theta)$

The IDEA DCH

- Large volume: R_{in} = 0.35 m, R_{out} = 2 m, L = 4 m, Inner wall = 200 μm thick Carbon fiber, Outer wall = 2cm thick composite material sandwich
- Operating gas: He 90% iC₄H₁₀ 10%
- Full stereo: 112 co-axial layers, arranged in 24 (15°) identical azimuthal sectors, at alternating-sign stereo angles ranging from 50 to 250 mrad
- Granularity: 12÷14.5 mm (at z=0) wide square cells, 5 : 1 field to sense wires ratio
- drift length ~1 cm, drift time ~350-400 ns
- Expected resolution $\sigma_{xy} < 100 \ \mu m, \sigma_z < 1 \ mm$
- **56,448 cells and** 343968 wires in total:

sense wires \rightarrow 20 µm diameter W(Au) => 56448 wires (thin!!) field wires \rightarrow 40 µm diameter Al(Ag) => 229056 wires Field between sense \rightarrow 50 µm diameter Al(Ag) => 58464 wires and guard wires

combination of + and –wire orientation produces a more uniform equipotential surface \rightarrow better E-field isotropy and smaller E×B asymmetries)

4

Thin wires+separation gas envelope/wire supporting structure ("feed-through-less") \rightarrow increase chamber granularity but reducing material, multiple scattering and total tension on end plates

Challenges:

- the accuracy of the position has to be in the range of 100-200 μm
- the position of the anodic wire in space must be known with an accuracy better than 50 μ m at most
- the anodic and cathodic wires should be parallel in space to preserve the uniformity of the electric field
- a 20µm tungsten wire, 4m long, will bow about 400 µm at its middle point, if tensioned with a load of approximately 30gr → 30gr tension for each wire → 10 tons of total load on the endcap

IDEA DCH: mechanical structure/2

FEM Parametric Design exploration \rightarrow varying input parameters in some possible ranges in order to see how the system responds - Response Surface Methodology (RSM) is used.

The input parametric variables are:

- 1. Height and thickness of the outer (cage) cylinder;
- 2. Dimensions (breadth and depth) of the spokes;
- 3. Dimensions (radius) of the cables;
- 4. Thickness of the inner (cage) cylinder.

Total deformation along the chamber axis of the model If no optimization of the spoke cross section, and no prestressing force in the cables

Parameters:

Height: Innerthickness: Outerthickness: Rectangle_B: Rectangle_H: Circle_R:

Responses:

Maximum_Deformation:22.995 mm (Linear Analysis)Maximum_Deformation:21.643 mm (Non-Linear Analysis)Total_Mass:2.6269 kg per sectorTotal_Deformation_Load_Multiplier:2.2068

200 mm

10 mm

14.4 mm

9.6 mm

16.6 mm

1.5 mm

IDEA DCH: mechanical structure/3

- FEM analysis: single endcap simulation → Spokes and cables behaviour under wires pressure
- Goals: minimizing the deformation of the spokes using prestressing force in the cables Finding the correct prestressing force in 15 cables \rightarrow solving 15 dimensional optimization problem Limit the deformation of the spokes to 200 µm while ensuring the structural integrity \rightarrow few µm error on the sagitta

IDEA DCH: mechanical structure/4

A complete, mechanically accurate model definition ongoing (ENGINSOFT), with:

- location of the necessary spacers
- definition of the connections of:
 - cables on the structure
 - wires on the PCB
 - wire cage and gas containment structure

Design and construction of the mold for the spokes and the inner ring are now starting, with the model as input (CETMA)

Minimum stereo angle Maximum stereo angle:

50 mrad 250 mrad

Cell size 1.2 - 1.4 cm

TOTAL LAYERS: 10 Sense wires: 168 Field wires: 965 Guard wires: 264

Aiming to realize a DCH prototype full lenght:

- to check electrostatic stability
- to test materials (wires, spokes,...), techniques (soldering, glueing, ...), front-end, digitization, etc.
- Enough layers to be effective, but limit # of wires and complexity
- Close to the most updated design

PCBoards wire layers: 42 Sense wire boards: 8 Field wire boards: 22 Guard wire boards: 12

IDEA DCH: Particle Identification/1

- He based gas mixtures \rightarrow signals from ionization acts are spread in time to few ns
- Fast read-out electronics (~GHz sampling) → efficiently identify them
- Counting dN_{cl}/dx (# of ionization acts per unit length) → make possible to identify particles (P.Id.) with a better resolution than dE/dx

- Collect signal and identify peaks
- record the arrival time of the clusters generated in every ionisation act (≈12cm⁻¹)
- reconstruct the trajectory at the most likely position

- Requires high stability on HV and gas parameters and electronics calibration
- truncated mean cut (70-80%) reduces the amount of information. For n = 112 and a 2m track at 1 atm $\rightarrow \sigma \approx 4.3\%$

$$\frac{\sigma_{dE/dx}}{(dE/dx)} = 0.41 \cdot N^{-0.43} \cdot \left(L_{track} [m] \cdot P[atm]\right)^{-0.32}$$
 Empirical parametrization

P. Reak and A.H. Walenta, IEEE Trans. Nucl. Sci. NS-27 (1980) 54

 Requires fast electronics and sophisticated counting algorithms

 dN_{cl}/dx

- Less dependent on gain stability issues
- $\delta_{cl} = 12./\text{cm}$ for He/iC₄H₁₀=90/10 and a 2m track $\rightarrow \sigma \approx 2.0\%$

$$\frac{\sigma_{dN_{cl}/dx}}{(dN_{cl}/dx)} = (\delta_{cl} \cdot L_{track})^{-1/2} = N_{cl}^{-1/2}$$

Poisson

IDEA DCH: Particle Identification/2

• Analytical calculations \rightarrow predict excellent K/ π separation over the full range of momenta except 0.85<p<1.05 GeV Analitic calculations:

Analitic calculations: He/iC₄H₁₀ 90/10 δ_{cl} =12 cm⁻¹ σ (dE/dx)/(dE/dx) =4.3% 80% cluster counting efficiency

- Simulation with Garfield++ and with the Garfield model ported in GEANT4:
- the particle separation, both with dE/dx and with dN_{cl}/dx, in GEANT4 found considerably worse than in Garfield
- the dN_{cl}/dx Fermi plateau with respect to dE/dx is reached at lower values of $\beta\gamma$ with a steeper slope
- Results on real data from beam tests are crucial

- Two muon beam tests performed at CERN-H8 (βγ > 400) in Nov. 2021 and July 2022.
- A muon beam test (from 4 to 12 GeV momentum) in 2023 performed at CERN PS
- test at FNAL-MT6 with π and K ($\beta\gamma = 10-140$) could be important to fully exploit the relativitic rise.

IDEA DCH: Particle Identification/3

used in analizing 2021/2022 data

Sense Wire Diameter 15 µm; Cell Size 1.0 cm; Track Angle 45; Sampling rate 2 GSa/s; Gas Mixture He:IsoB 80/20

Clusterization (merging electron peaks) in 2021/2022 data

Sense Wire Diameter 15 µm; Cell Size 1.0 cm; Track Angle 45; Sampling rate 2 GSa/s; Gas Mixture He:IsoB 80/20

- Merging of electron peaks in consecutive bins in a single electron to reduce fake electrons counting.
- Contiguous electrons peaks which are compatible with the electrons' diffusion time (it has a $\sim \sqrt{t_{FlectronPeak}}$ dependence, different for each gas mixture) must be considered belonging to the same ionization cluster. For them, a counter for electrons per each cluster is incremented.
- **Position and amplitude** of the clusters corresponds to the position and height of the electron having the maximum amplitude in the cluster.

Poissonian distribution for the number of clusters!

E-field suppression due to space charge effects + attachment + recombination affect the cluster counting efficiency \rightarrow corrections (depending on the drift length) applied

IDEA DCH: data reduction and signal pre-processing

(further details in the F. Bedeschi's talk)

High speed digitization (2 GSa/s) for $CC \Rightarrow$ Transfer rate of TB/s.

Data reduction strategy: transfer, for each hit drift cell, only the minimal information relevant to apply the **Cluster Counting/Timing (CCT) techniques**, i.e. the **amplitude** and the **arrival time of each peak** associated with **each individual ionisation electron** \Rightarrow **CCT algorithms!**

Use of a FPGA for the real-time data analysis of drift chamber signals digitized by an ADC.

Goal: implement on a single FPGA more sophisticated peak finding algorithms for the parallel pre-processing of many ADC channels

Moreover, needed to understand how to implement the data transfer to the DAQ via Optical fibers within the 10Gbit/s standard

- Completed bench tests with ASoCv3 chip (4 channels) from NALU SCIENTIFIC. Next step is to readout drift tube signals and to process them on-line.
- Received NALU SCIENTIFIC HDSoC (32 channels test board). Evaluation tests with drift tubes and cosmic rays are starting
- CAEN provided us the VX2740 digitizer (a lower performance version of the VX2751, suitable for cluster counting) → becoming familiar with the openFPGA
 SCICompiler software
- Also exploiting the possibility of implementing the CAEN FERS-5200 platform using the Citiroc-1A chip, with proper ASIC and digitizer, as a modular, scalable platform for the high readout density of a large volume drift chamber instrumented with cluster counting.

IDEA DCH: simulation

Geant4 and DD4HEP simulations of the IDEA geometry are available:

- The DCH is simulated at a good level of geometry details, including detailed description of the endcaps; hit and digi creation (while track reconstruction code available in Geant4)
- Cluster Counting/Timing simulation:

- Rather simple algorithm which use the energy deposit information provided by Geant4 to reproduce, in a fast way, the clusters number distribution and the cluster size distribution (starting from the cluster kinetic energy in Garfield++ simulations)
- > The algorithm has been implemented successfully in the IDEA full SIM (GEANT4 and Key4HEP)

Cluster size distribution, for a muon at 10 GeV

The results obtained form the **GEANT 4 Full Simulation framework** for the cluster population (~1.6) is in a good agreement with **Garfield++ expectation** (~1.56), the results from the **test beam analysis**(~1.7), and with the **analytic evaluations** (~1.6).

Progress and developments on the IDEA DCH reported on:

- Mechanical structure \rightarrow under definition (design, materials, component optimization)
- Cluster counting technique → under study on test beam data analysis (efficiency, electron peaks and cluster density as a function of gas mixture, gain, cell size, sense wire diameter, sampling rate, track angle)
- Data reduction and pre-processing \rightarrow electronics components under test
- Simulation \rightarrow geometry, performance, cluster counting

Thank you for your attention!

Backup slides

Extremely high luminosities:

large statistics (high statistical precision) - control of systematics (@10⁻⁵ level)

- Large beam crossing angle (30mrad) very complex MDI emittance blow-up with detector solenoid field (< 2T)
- Physics event rates up to 100 kHz (at Z pole) strong requirements on sub-detectors and DAQ systems
- Bunch spacing down to 20 ns (at Z pole) "continuous" beams (no power pulsing)
- More physics challenges at Z pole:
 - · luminosity measurement at 10⁻⁵ luminometer acceptance \approx 1-2 μ m
 - detector acceptance definition at <10⁻⁵ detector hermeticity (no cracks!)
 - stability of momentum measurement stability of magnetic field wrt E_{cm} (10⁻⁶)
 - b/c/g jets separation flavor and τ physics vertex detector precision
 - particle identification (preserving hermeticity) flavor physics (and rare processes)

- The maximum drift time (400ns) will impose an overlap of some (20 at Z pole) bunch crossings bringing the hit occupancy to ~ 10% in the inner-most drift cells. Based on MEG-II experience, this occupancy, which allows over 100 hits to be recorded per track on average in the DCH, is deemed manageable.
- However, signals from photons can be effectively suppressed at the data acquisition level by requiring that at least three ionization clusters appear within a time window of 50 ns.
- In addition, cluster signals separated by more than 100 ns are not from the same signals, this effectively bring the BXs pile-up from 20 to 4

17

High Lumi e⁺e⁻ colliders:

- EW factories $(3x10^{12} e^+e^- \rightarrow Z, 10^8 e^+e^- \rightarrow W^+W^-)$
- tt and Higgs boson factories (10⁶ e⁺e⁻→tt, 10⁶ e⁺e⁻→HZ)
- flavor factories (5x10¹² e⁺e⁻ \rightarrow bb, cc, 10¹¹ e⁺e⁻ \rightarrow $\tau^+\tau^-$)

FCC-ee parameters		Z	W⁺W [_]	ZH	ttbar
√s	GeV	91.2	160	240	350-365
Luminosity / IP	10 ³⁴ cm ⁻² s ⁻¹	230	28	8.5	1.7
Bunch spacing	ns	19.6	163	994	3000
"Physics" cross section	pb	35,000	10	0.2	0.5
Total cross section (Z)	pb	40,000	30	10	8
Event rate	Hz	92,000	8.4	1	0.1
"Pile up" parameter [μ]	10 ⁻⁶	1,800	1	1	1

Physics rates up to 100 kHz (at Z pole, challenging) \rightarrow fast detectors and FE electronic and DAQ

Tracker:

- High momentum $(\delta p/p^2 \le \text{few x 10}^{-5})$ and angular resolution $\Delta \vartheta \le 0.1 \text{ mrad}$ (to monitor beam spread) for charged particle momenta ranging at the Z pole from a few hundred MeV/c to several tens of GeV/c
- Large angular coverage
- Large tracking radius to recover momentum resolution since magnetic field is limited to ~ 2 T to contain the vertical emittance at Z pole
- High transparency due to the low momentum particles from Z, H decays → Multiple Scattering (MS) contribution to the resolution is not negligible!
- Particle identification to distinguish identical topology final states \rightarrow flavour and τ physics, rare processes

Vertexing:

- Few μm track impact parameter resolution
- High transparency

19

IDEA drift chamber: expected tracking performance

- Full Geant4 standalone simulation of the IDEA tracking system →drift chamber simulated at a good level of geometry details
- Vertex detector and Si wrapper included in the track fit taking into account material contributions
- A preliminary Vertex detector and Drift Chamber description implemented inside the FCC-sw

single muons, p_T resolutions as function of ϑ and p_T assuming $\sigma_d = 100 \ \mu m$ and (conservative for Si) $\sigma_{Si} = pitch/V12 \ \mu m$

IDEA drift chamber: expected performance on physics events

IDEA Fast simulation (Delphes) → Parameterized response of the detector + covariance matrix description for tracks

DCH muon momentum resolution (in clean events) \rightarrow 1% stat. unc. on inclusive σ_{ZH} $\rightarrow \sim 6$ MeV on m_H

IDEAtrkCov Zoom in on the ZH peak region CLD has larger width and lower peak CLDtrkCov

Performance Meeting, January 18th 2021

Machine background

 Machine background → preliminary study of the induced occupancy show that it will be not an issue

Background	Average occupancy		
	$\sqrt{s} = 91.2 \text{ GeV}$	$\sqrt{s} = 365 \text{ GeV}$	
e^+e^- pair background	1.1%	2.9%	
$\gamma\gamma \rightarrow \text{hadrons}$	0.001%	0.035%	
Synchrotron radiation	negligible	0.2%	

24

dE/dx and dN_{cl}/dx

$$\frac{\sigma_{dE/dx}}{\left(dE/dx\right)} = 0.41 \cdot N^{-0.43} \cdot \left(L_{track} \left[m\right] \cdot P\left[atm\right]\right)^{-0.32}$$

Empirical parameterization of dE/dx resolution in gas (limited by Landau fluctuations)

Walenta

"It has been experimentally confirmed that the relativistic rise is mainly due to the increased number of the primary clusters, rather than due to the energy of clusters." *P. Reak and A.H. Walenta, IEEE Trans. Nucl. Sci. NS-27 (1980) 54*

$$\frac{\sigma_{dN_{cl}/dx}}{\left(dN_{cl}/dx\right)} = \left(\delta_{cl} \cdot L_{track}\right)^{-1/2} = N_{cl}^{-1/2}$$

truncated mean cut (70-80%) reduces the amount of collected information

n **= 112** and a **2m track** at **1 atm** give

σ ≈ 4.3%

Increasing P to 2 atm improves resolution by 20% ($\sigma \approx 3.4\%$) but at a **considerable** cost of multiple scattering contribution to momentum and angular resolutions. δ_{cl} = 12.5/cm for He/iC₄H₁₀=90/10 and a 2m track give

 $dN_{c'}/dx$

σ ≈ 2.0%

A small increment of iC_4H_{10} from 10% to 20% (δ_{cl} = 20/cm) improves resolution by 20% ($\sigma \approx 1.6\%$) at only a **reasonable** cost of multiple scattering contribution to momentum and angular resolutions.

Conditions to be satisfied for cluster counting \rightarrow pulses from electrons belonging to different clusters must have a little chance of overlapping in time and, at the same time, the time distance between pulses generated by electrons coming from the same cluster must be small enough to prevent over-counting. The optimal counting condition can be reached only as a result of the equilibrium between the fluctuations of those processes which forbid a full cluster detection efficiency and of the ones enhancing the time separation among different ionization events. (F. Grancagnolo - PId with dE/dx, IAS Program on High Energy Physics (HEP 2021), Hong Kong, 15 January 2021)

Cluster timing

0.025

0.02

0.015

0.014

0.005

0.0054

Σ

acquired

signal

time [s] x 10

reconstructed

signal

First

b.mc (mm)

687184 wire

From the ordered sequence of the electrons arrival times, considering the average time separation between clusters and their time spread due to diffusion, reconstruct the most probable sequence of clusters drift times: $i = 1, N_{c}$

> Bias Legend (Del $-\lambda/2$ MPS First cluster Maximum alternating λ Possible Spacing algorithm Cluster

Spatial resolution could be improved \rightarrow < 100 μ m for 8 mm drift *cells* in He based gas mixtures

Derivative Algorithm (DERIV)

Find good electron peak candidates at position bin n and amplitude $A_{\rm n}$:

- Compute the first and second derivative from the amplitude average over two times the timing resolution and require that, at the peak candidate position, they are less than a r.m.s. signal-related small quantity and they increase (decrease) before (after) the peak candidate position of a r.m.s. signal-related small quantity.
- Require that the amplitude at the peak candidate position is greater than a r.m.s. signal-related small quantity and the amplitude difference among the peak candidate and the previous (next) signal amplitude is greater (less) than a r.m.s. signal-related small quantity.
- NOTE: r.m.s. is a measurements of the noise level in the analog signal from first bins.

Running Template Algorithm (RTA)

- Define an electron pulse template based on experimental data.
- Raising and falling exponential over a fixed number of bins (Ktot).
- Digitize it (A(k)) according to the data sampling rate.
- The algorithm scan the wave form and run over Ktot bins by comparing it to the subtracted and normalized data (build a sort of χ²).
- Define a cut on χ².
- Subtract the found peak to the signal spectrum.
- Iterate the search.
- Stop when no new peak is found.

Cluster counting with machine learning

Peak finding with LSTM

Why LSTM? Waveforms are time series

- Architecture: LSTM (RNN-based)
- Method: Binary classification of signals and noises on slide windows of peak candidates

Clusterization with DGCNN

Why DGCNN? Locality of the electrons in the same primary cluster, perform massage passing through neighbour nodes in GNN

- arXiv: 1801.07829
- Architecture: DGCNN (GNN-based)
- Method: Binary classification of primary and secondary electrons

DGCNN: Dynamic Graph Convolutional neural networks

LSTM model is better classifier compared to derivative-based model

LSTM: Long Short-Term Memory

Board for cluster <u>counting</u>: new idea ML algorithm

The first step required for the implementation of the neural network on the FPGA is the conversion of the high-level code used for the creation of the network (<u>QKeras</u>) into <u>an</u> High-Level Synthesis (HLS)

To accomplish this task, the hls4ml package will used.

A schematic workflow of hls4ml is illustrated in the figures.

- 1. The parts red indicates the usual software steps required to design a neural network for a specific task.
- 2. The blue section of the workflow is the task done by hls4ml, which translates the model into an HLS project that can be synthesised and implemented to run on an FPGA.