
Status of EDM4hep

This project has received funding from the
European Union’s Horizon 2020 Research and
Innovation programme under grant agree-
ment No 101004761.

Thomas Madlener
7th FCC physics workshop

Jan 30, 2024

The EDM at the core of HEP software

• Different components of experiment software have to talk to each other
• The event data model defines the language for this communication
• Users express their ideas in the same language

Jan 30, 2024 T.Madlener | 7th FCC physics workshop 1

EDM4hep - The common EDM for Key4hep

key4hep/EDM4hep
edm4hep.web.cern.ch

AIDASoft/podio

• Based on LCIO and
FCC-edm

• Focus on usability in
analysis

• Quite stable over the last
two years

• Some breaking changes
foreseen for v1.0!

• Can easily be extended
• Used by EDM4eic
• Prototyping!

• Generated via podio

Jan 30, 2024 T.Madlener | 7th FCC physics workshop 2

https://github.com/key4hep/EDM4hep
https://edm4hep.web.cern.ch/
https://github.com/AIDASoft/podio

The podio EDM toolkit

• Implementing a performant event data
model (EDM) is non-trivial

• Use podio to generate code starting
from a high level description

• Provide an easy to use interface to the
users

• Main customers and feature drivers
• key4hep/EDM4hep
• eic/EDM4eic

.cc
.cc

class MCParticleData{
 int PDG;
 float charge;
 double mass;
 Vector3d vertex;
};

.h/.cc

MCParticle:
 Members:
 - int PDG
 - float charge
 - double mass
 - Vector3d vertex

YAML

(*podio code
generator) +=

AIDASoft/podio

Jan 30, 2024 T.Madlener | 7th FCC physics workshop 3

https://github.com/key4hep/EDM4hep
https://github.com/eic/EDM4eic
https://github.com/AIDASoft/podio

The three layers of podio

• podio favors composition over inheritance and uses plain-old-data (POD)
types wherever possible

• Layered design allows for efficient memory layout and performant I/O
implementation

Jan 30, 2024 T.Madlener | 7th FCC physics workshop 4

podio supports different I/O backends

• Default ROOT backend
• Effectively flat ntuples (TTree /

RNTuple)
• Files can be interpreted without
EDM library(!)

• Intelligble names NEW Jun 23
• Can be used in RDataFrame
(FCCAnalyses) or with uproot

• Adding more I/O backends is
possible

• Alternative SIO backend exists

• Many features only available
through generated interfaces

Jan 30, 2024 T.Madlener | 7th FCC physics workshop 5

Obj

Collection
ObjectID

Data

Relations

Vector
Members

I/O
Backend

CollectionBuffers

The Frame - A generalized (event) data container

• Type erased container aggregating all
relevant data

• Defines an interval of validity /
category for contained data

• Event, Run, readout frame, ...
• Easy to use and thread safe interface
for data access

• Immutable read access only
• Ownership model reflected in API

• Decouples I/O from operating on the
data

• Old EventStore has been removed!

Frame

Collection

Collection

Collection

Collection

Collection

Collection
co
ns
t&

mutable owned by user

Parameters

std::move

const&

template<typename CollT>
const CollT& get(const std::string& name) const;

template<typename CollT, /*enable_if*/>
const CollT& put(CollT&& collection,

const std::string& name);

Jan 30, 2024 T.Madlener | 7th FCC physics workshop 6

Schema evolution

Comparing datamodel versions v2 and v1

Found 3 schema changes:
- 'ex2::NamespaceStruct' has an addded member 'y'
- 'ex2::NamespaceStruct' has a dropped member 'y_old'
- 'ExampleStruct.x' changed type from 'int' to 'double'

Warnings:
- Definition 'ex2::NamespaceStruct' has a potential [...]

ERRORS:
- Forbidden schema change in 'ExampleStruct' for 'x' [...]

• Allow to read old versions of an EDM
from file and convert “on-the-fly”

• Hard problem with many considerations
• Leverage backend if possible
• Allow user defined evolution

• Evolution always directly to current
version

• Detect potential problems at code
generation

• Expand available automatic evolutions
as necessary

• Machinery in place; “whatever ROOT can
do” for now

Jan 30, 2024 T.Madlener | 7th FCC physics workshop 7

Interface types and their use in EDM4hep
Track

gaseous

silicon

interfaces:
edm4hep::TrackerHit:

Types: [edm4hep::TrackerHit3D, edm4hep::TrackerHitPlane]
Members:

- edm4hep::Vector3f position [mm] // hit position

datatypes:
edm4hep::Track:

OneToManyRelations:
- edm4hep::TrackerHit trackerHits // hits of this track

auto track = edm4hep::Track{};
track.addHit(edm4hep::TrackerHit3D{});
track.addHit(edm4hep::TrackerHitPlane{});

const auto hits = track.getHits();
hits[0].isA<edm4hep::TrackerHit3D>(); // <-- true
hits[0].getValue<edm4hep::TrackerHit3D>(); // <-- "cast back"
hits[1].isA<edm4hep::TrackerHit3D>(); // <-- false
hits[1].getValue<edm4hep::TrackerHit3D>(); // <-- exception!

• General interface can be useful to
“gloss over some details”

• Value semantics prevent inheritance
based approach

• Pointers in interfaces break
consistency

• No base class to inherit from
• Introduce interfaces as new
category in YAML definition

• Define desired functionality
• No collections!
• Use like normal datatypes
• “Casting back” is possible

Jan 30, 2024 T.Madlener | 7th FCC physics workshop 8

Current developments towards EDM4hep v1.0
• We are going to break some things without
intention of doing schema evolution!

• Consistent mutability concept
• Some inconsistencies inherited from LCIO
• Make sure to have relations “in the right
direction”

• Remove unused relations

• Introduce TrackerHit interface
• Add multiple weights to EventHeader
• Renaming of a few relations
• Now is a good time to bring up bigger
changes

• Keeping track in EDM4hep v1.0 project

Event

Tracks

TrackerHits

TrackingProcessor

dEdXProcessor

creates and puts

add dEdX info

Jan 30, 2024 T.Madlener | 7th FCC physics workshop 9

https://github.com/orgs/key4hep/projects/5

Summary

• EDM4hep is the common EDM and as such a core component of Key4hep
• Crucial developments in podio are done

• File format frozen for quite some time now
• Consider it feature complete for now
• v1.0 soon (weeks)→ backward compatible from then on

• Need to fix some conceptual issues and integrate podio latest features in
EDM4hep

• Breaking changes without plans for smooth evolution
• EDM4hep v1.0 planned to be finished soon

• Backward compatible or transparent migration afterwards

Jan 30, 2024 T.Madlener | 7th FCC physics workshop 10

Jan 30, 2024 T.Madlener | 7th FCC physics workshop 0

Supplementary
Material

I/O low level basics

• I/O is based on collections
• CollectionBuffer holds all
necessary data to (de)serialize a
collection

• Simple POD buffers (AoS)
• I/O backend only needs to handle
these

• CollectionBufferFactory creates
empty buffers

• (type, version)→ std::function
• Populated during datamodel
library loading

Obj

Collection
ObjectID

Data

Relations

Vector
Members

I/O
Backend

CollectionBuffers

CollectionBufferFactory

collType: "ClusterCollection"
version: 2

collType: "HitCollection"
version: 3

cr
ea
te
Bu
ffe
rs

Jan 30, 2024 T.Madlener | 7th FCC physics workshop 1 (backup)

I/O on the Frame level

Frame

ROOTFrameData
ROOTFrameDataROOTReader provides

SIOFrameDataSIOReader provides Frame

SIOFrameData

construct from

construct from

single threaded potentially multithreaded single
threaded

Reading

Frame

ROOTWriter

SIOWriter

re
ques

ts

buffe
rs

fro
m

requests

buffers from

Writing

• Readers & Writers assumed to be
single threaded

• Low level building blocks
• Defer work as long as possible

• Minimize time in Reader
• Frame can be constructed from
“arbitrary” FrameDataT

• Provides CollectionBuffers
• Contain complete data for a Frame

Jan 30, 2024 T.Madlener | 7th FCC physics workshop 2 (backup)

Schema evolution - Technical details

• Called as early as possible and as
late as necessary

• Earliest point where we have
collection buffers from all
backends is in Frame

• Schema evolution functions
available from SchemaEvolution
singleton

• Populated during shared library
loading

• Schema evolution can be a no-op

Map<string, unique_ptr<CollectionBase>> m_colls;
unique_ptr<FrameDataT> m_frameData;

Frame

in m_colls?

auto buffers = m_frameData->getBuffers(name)

buffers = schemaEvolution(buffers, buffers.version,
 buffers.type);
auto it = m_colls.emplace(name, buffers.create());
return it->second;

return collection;

collection
not present

Frame::get(std::string name)

true

valid buffers

false

no buffers

Jan 30, 2024 T.Madlener | 7th FCC physics workshop 3 (backup)

More recent transparent(-ish) changes

• Stable collection IDs
• Initially: Insertion order into Frame
• Now: Hash of collection name
• 32 bits for transparent migration

• RNTuple based backend
• Storing datamodel definition in
metadata Frame

• Always possible to regenerate
datamodel from datafile

• Retrievable programmatically
• Dumping via podio-dump
• String literal embedded into binary

struct ObjectID {
int index;
uint32_t collectionID;

};

ObjectID

Data

Relations

Vector
Members

Obj

readelf -p .rodata libedm4hep.so | grep options
[368] {"options": {<...>},

"schema_version": 1, "components": {<...>},
"datatypes": {<...>}}

Jan 30, 2024 T.Madlener | 7th FCC physics workshop 4 (backup)

podio - datamodel definition
components:

edm4hep::Vector3f:
Members: [float x, float y, float z]

datatypes:
edm4hep::ReconstructedParticle:

Description: "Reconstructed Particle"
Author : "F.Gaede, DESY"
Members:

- edm4hep::Vector3f momentum // [GeV] particle momentum
- std::array<float, 10> covMatrix // energy-momentum covariance

OneToOneRelations:
- edm4hep::Vertex startVertex // start vertex associated to this particle

OneToManyRelations:
- edm4hep::Cluster clusters // clusters that have been used for this particle
- edm4hep::ReconstructedParticle particles // associated particles

ExtraCode:
declaration: "bool isCompund() const { return particles_size() > 0; }\n"

edm4hep::ParticleID:
VectorMembers:

- float parameters // hypothesis params

• Reusable components
• Fixed sized arrays as members
• VectorMembers for variable sized array members

• 1 – 1 and 1 – N relations
• Additional user-provided code

Jan 30, 2024 T.Madlener | 7th FCC physics workshop 5 (backup)

*extracted from edm4hep.yaml

https://github.com/key4hep/EDM4hep/blob/master/edm4hep.yaml

podio - features of generated code

Jan 30, 2024 T.Madlener | 7th FCC physics workshop 6 (backup)

auto recos = ReconstructedParticleCollection();
// ... fill ...
for (auto reco : recos) {

auto vtx = reco.getStartVertex();
for (auto rp : reco.getParticles()) {

auto mom = rp.getMomentum();
}

}

← c++17 code with “value semantics”

↓ Python bindings via PyROOT
recos = ReconstructedParticleCollection()
#... fill ...
for reco in recos:

vtx = reco.getStartVertex()
for rp in reco.getParticles():

mom = rp.getMomentum()

d = ROOT.RDataFrame('events', 'events.root')
h = (d.Define('abs_pdg', 'abs(Particle.PDG)')

.Define('mu_sel', 'abs_pdg == 13')

.Define('mu_px',
'Particle.momentum.x[mu_sel]')

.Histo1D('mu_px'))
h.DrawCopy()

← Using RDataFrame to read ROOT
files (uproot also possible)

CMake interface for projects using podio

Jan 30, 2024 T.Madlener | 7th FCC physics workshop 7 (backup)

find_package(PODIO)

generate the c++ code from the yaml definition
PODIO_GENERATE_DATAMODEL(edm4hep edm4hep.yaml headers sources IO_BACKEND_HANDLERS "ROOT;SIO")
compile the core data model shared library (no I/O)
PODIO_ADD_DATAMODEL_CORE_LIB(edm4hep "${headers}" "${sources}")
generate and compile the ROOT I/O dictionary
PODIO_ADD_ROOT_IO_DICT(edm4hepDict edm4hep "${headers}" src/selection.xml)
compile the SIOBlocks shared library for the SIO backend
PODIO_ADD_SIO_IO_BLOCKS(edm4hep "${headers}" "${sources}")

Install the created targets
install(TARGETS edm4hep edm4hepDict edm4hepSioBlocks)

• Easy to use functions for integrating a podio generated EDM into a project
• Split into core EDM library and I/O handling for different backends

• Pick what you need
• I/O handling parts dynamically loaded by podio on startup

	Appendix

