

Developing in Key4HEP:
good practice and advice

Alvaro Tolosa-Delgado (CERN)

FCC physics week 2024, Annecy

Jan. 30th, 2024

alvaro.tolosa.delgado@cern.chDeveloping in Key4hep

Developing in Key4hep

● What is Key4hep

● Gaudi, framework of FCC software

● Full simulation

● Appendix

➢ How to use HTCondor & EOS for heavy duty jobs

➢ Some recommendations when implementing the geometry of
a detector in DD4hep/Geant4

2

alvaro.tolosa.delgado@cern.chDeveloping in Key4hep

Developing in Key4hep

● What is Key4hep

➢ Software stack

➢ How to work with local installation of particular packages

● Gaudi, framework of FCC software

● Full simulation

● Appendix

3

alvaro.tolosa.delgado@cern.ch

What is Key4hep

● Key4hep is a software stack, distributed via CVMFS, which provides the
required packages and repositories for future collider studies

● The software stack includes many packages:

➢ HEP Software tools: ROOT, Geant4, DD4hep, Gaudi…

➢ Detector implementation: k4geo

➢ Event data model: podio, EDM4hep

➢ Reconstruction and Particle flow: ACTS, Pandora, CLUE

➢ FCCSW

➢ ILCsoft: Marlin, LCIO, LCFiPlus

➢ CEPCSW

➢ ...

Developing in Key4hep 4

alvaro.tolosa.delgado@cern.ch

What is Key4hep

● There are two stack flavors according to the release frequency:

● Nightlies, all packages are built on a daily basis, using the last version of
each package

source /cvmfs/sw-nightlies.hsf.org/key4hep/setup.sh

● Stable, packages are built on a monthly basis,

source /cvmfs/sw.hsf.org/key4hep/setup.sh

● The main difference is that stable is thoroughly tested, while nightlies may
include some broken dependencies. Older releases of the nightly stack may be
used, and they are available here:

ls -lah /cvmfs/sw-nightlies.hsf.org/key4hep/releases

● Active discussion in the github repository and the bi-weekly key4hep meetings

Developing in Key4hep 5

https://github.com/key4hep/key4hep-spack
https://indico.cern.ch/category/11461/

alvaro.tolosa.delgado@cern.ch

Key4hep stack. Work with local installation

● It is possible to work with a local installation of a package instead of the
corresponding one available in the key4hep stack (from CVMFS)

● When working with a local installation of a package:

➔ Check that is possible, ask in case of doubt

➔ Use the same key4hep stack to compile the package to ensure compatibility
with the other packages

➔ Remove paths pointing to the key4hep (CVMFS) package in the
corresponding environmental variables: LD_LIBRARY_PATH,PATH,
PYTHONPATH, ROOT_INCLUDE_PATH, CMAKE_PREFIX_PATH

➔ Add the path of the local version of the package to the corresponding
environmental variables

➔ Update environmental variable that holds the path to installed components of
the package. The variables that may be affected are shown with the
command: env | grep 'K4'

Developing in Key4hep 6

alvaro.tolosa.delgado@cern.ch

Key4hep stack. Example of local installation of k4geo

Remove central k4geo from LD_LIBRARY_PATH variable:
export LD_LIBRARY_PATH=`echo $LD_LIBRARY_PATH | tr ':' '\n' | grep -Ev "/k4geo/" | tr '\n' ':' `

Now we can build the local version of k4geo

git clone -b CLD_with_ARC

https://github.com/atolosadelgado/k4geo.git

cd k4geo/

cmake -B build -S . -D CMAKE_INSTALL_PREFIX=install

cmake --build build -j 6 -- install

export LD_LIBRARY_PATH=$PWD/install/lib:$LD_LIBRARY_PATH

Other repositories may need to update other environmental variables as

well: PATH, PYTHONPATH, ROOT_INCLUDE_PATH, CMAKE_PREFIX_PATH

Developing in Key4hep 7

alvaro.tolosa.delgado@cern.chDeveloping in Key4hep

Developing in Key4hep

● What is Key4hep

● Gaudi, framework of FCC software

➢ EDM4hep as FCC event data model

➢ Gaudi functionals

● Full simulation

● Appendix

8

alvaro.tolosa.delgado@cern.ch

Gaudi as framework for FCC software

● Gaudi is a framework software package that is used to build data processing
applications [link to docs, link],

● The input data and newly generated data during the execution is stored in the so-
called Event Transient Store (ETS)

● The input data is event-wise (see next slide about data format)

● Each event is processed by a chain of functions called algorithms
➢ Stateless functions (that is, they do not store state between events) grant

scalability and thread safety. However, not all algorithms are stateless.

● Some functionality is needed during the whole process, such as the random number
generation or the geometry description. This functionality is encapsulated in the so-
called services.

● Part of the functionality can be encapsulated into an external object called tool, and
assigned to the algorithm/service at initialization time in the steering file

● To list all the algorithms and services available use the command: k4run -l

Developing in Key4hep 9

https://gaudi.web.cern.ch/gaudi/
https://lhcb.github.io/DevelopKit/03a-gaudi/

alvaro.tolosa.delgado@cern.ch

Gaudi steering file. Material scan example

● Example of a Gaudi steering file that performs a material scan of a detector

Name of file: materialScan.py
To execute: k4run materialScan.py

import Gaudi application manager (Gaudi Service)

from Configurables import ApplicationMgr

import DD4hep geometry Gaudi Service and parse compact file

from Configurables import GeoSvc

geoservice = GeoSvc("GeoSvc")

geoservice.detectors = ['./compact/ARC_standalone_o1_v01.xml']

ApplicationMgr().ExtSvc += [geoservice]

import material scan Service and add it to the list of Svc of the ApplicationMgr

from Configurables import MaterialScan_2D_genericAngle

materialservice = MaterialScan_2D_genericAngle("GeoDump")

materialservice.filename = "out_material_scan.root"

materialservice.angleBinning = 0.001

ApplicationMgr().ExtSvc += [materialservice]

Developing in Key4hep 10

alvaro.tolosa.delgado@cern.ch

EDM4hep, an event data model for FCC

● EDM4hep is a generic event data model for future HEP collider experiments [link]

● PODIO library [link] is an abstraction layer that

● provide IO capabilities, at the moment based on ROOT TTrees

● generates the Event Data Model (EDM4hep), from a yaml input file

● The command podio-dump may be used to inspect the data types contained in a
file or to read one entry (similar output to Ttree::Show(), see slides later)

● EDM4hep describes more than 100 classes, but new classes may be added by:

● Declaring the class in a dedicated yaml file [example]

● Creating the Data Model using Podio CMake macros [example]

● The possibility of adding new EDM4hep classes is addressed in our
weekly EDM4hep/key4hep meeting, you are welcome to attend

● See T. Madlener talk for further details about EDM4hep

Developing in Key4hep 11

https://github.com/key4hep/EDM4hep
https://github.com/AIDASoft/podio
https://github.com/BrieucF/k4RecTracker/blob/master/DCHdigi/dataFormatExtension/driftChamberHit.yaml
https://github.com/BrieucF/k4RecTracker/blob/master/DCHdigi/CMakeLists.txt#L3
https://indico.cern.ch/category/11461/
https://indico.cern.ch/event/1307378/contributions/5729651/

alvaro.tolosa.delgado@cern.ch

EDM4hep, an event data model for FCC

● Example showing how to retrieve metadata from simulation output file (C++):
auto reader = podio::ROOTFrameReader();

reader.openFile("ALLEGRO_sim_edm4hep.root");

const auto metadata = podio::Frame(reader.readEntry("metadata", 0));

cellid_encoding = "system:4,cryo:1,type:3,layer:8,module:11"

const auto& cellid_encoding =
metadata.getParameter<std::string>("ArcCollection__CellIDEncoding"));

dd4hep::DDSegmentation::BitFieldCoder decoder(cellid_encoding);

for (size_t i = 0; i < reader.getEntries("events"); ++i) {

 auto event = podio::Frame(reader.readNextEntry("events"));

 auto& simCalorimeterHits =
event.get<edm4hep::SimCalorimeterHitCollection>("ECalBarrelEta");

 for (auto simCalorimeterHit : simCalorimeterHits){

 auto cellID = simCalorimeterHit->getCellID();

 int layer = decoder.get(cellID, "layer");

 }

 }

Developing in Key4hep 12

alvaro.tolosa.delgado@cern.ch

EDM4hep, an event data model for FCC

● Example showing how to retrieve metadata from simulation output file (python):

import podio

reader = podio.root_io.Reader("test.root")

metadata = reader.get("metadata")[0]

cellid_encoding = "system:4,cryo:1,type:3,layer:8,module:11"

cellid_encoding =
metadata.get_parameter("ArcCollection__CellIDEncoding")

import dd4hep as dd4hepModule

from ROOT import dd4hep

decoder = dd4hep.BitFieldCoder(cellid_encoding)

input_cellID = 1234

my_bar_value = decoder.get(input_cellID, "type")

Other examples of EDM4hep API can be found [here]

Developing in Key4hep 13

https://github.com/key4hep/key4hep-tutorials/blob/main/edm4hep_analysis/edm4hep_api_intro.md

alvaro.tolosa.delgado@cern.ch

Gaudi functionals

● Gaudi::Functional provides a general building block that is well defined and
multithreading friendly. This standardizes the common pattern of getting data out of
the TES, working on it, and putting it back in (in a different location).

● The following code shows how to implement an algorithm of type Transform to
sum up two input quantities

class MySum
 : public TransformAlgorithm<OutputData(const Input1&, const Input2&)> {

 MySum(const std::string& name, ISvcLocator* pSvc)
 : TransformAlgorithm(
 name,
 pSvc, {
 KeyValue("Input1Loc", "Data1"),
 KeyValue("Input2Loc", "Data2") },
 KeyValue("OutputLoc", "Output/Data")) { }

 OutputData operator()(const Input1& in1, const Input2& in2) const override {
 return in1 + in2;
 }

● A complete list of functionals may be found here
● This tutorial [link] reviews the main steps for the the implementation of a custom

Gaudi functional algorithm

Developing in Key4hep 14

https://lhcb.github.io/DevelopKit/03a-gaudi/
https://github.com/key4hep/key4hep-tutorials/tree/main/gaudi_alg_higgs

alvaro.tolosa.delgado@cern.ch

Gaudi functionals. A more realistic example

● Reconstruction algorithm for PID based on Cerenkov angle in a RICH detector
class RICH_PID

 : public TransformAlgorithm<ParticleID(const Track&, const TrackerHit&)> {

 RICH_PID(const std::string& name, ISvcLocator* pSvc)

 : TransformAlgorithm(

 Name, Psvc, {KeyValue("i1Loc", "tr"), KeyValue("i2Loc", "RICH_hits")},

 KeyValue("oLoc", "Output/Data")) { }

 ParticleID operator()(const Track& tr, , const TrackerHit& RICH_hit) const {

auto e_point = estimate_emission_pos_from_track(tr, geoSvc);

auto h_point = extract_hit_position(RICH_hit);

auto mirror_pr = get_mirror_properties(tr, geoSvc);

auto Cerenkov_angles = solve_raytracing_equation(e_point,h_point,mirror_pr);

auto ParticleID = local_pattern_recognition_alg(Cerenkov_angles);

 return ParticleID;

 }

Developing in Key4hep 15

alvaro.tolosa.delgado@cern.ch

Gaudi functionals. A word of warning

● Ancillary functions/classes/enums must always be hidden inside the class!
● Floating functions/classes/enums pollute the (global) namespace, leading to bugs
class RICH_PID,

 : public TransformAlgorithm<ParticleID(const Track&, const TrackerHit&)> {

 private:

 enum Particle_Hypothesis { e, mu, pi, proton, kaon, background };

 struct Cerenkov_angles { ... };

 ParticleID local_pattern_recognition_algorithm(Cerenkov_angles &);

 Public:

 RICH_PID(const std::string& name, ISvcLocator* pSvc)

 : TransformAlgorithm(

 Name, Psvc, {KeyValue("i1Loc", "tr"), KeyValue("i2Loc", "RICH_hits")},

 KeyValue("oLoc", "Output/Data")) { }

 OutputData operator()(const Track& tr, , const TrackerHit& RICH_hit) const;

 }

Developing in Key4hep 16

alvaro.tolosa.delgado@cern.chDeveloping in Key4hep

Developing in Key4hep

● What is Key4hep

● Gaudi, framework of FCC software

● Full simulation
➢ Detector description.

• Implementation of a new geometry
➢ Physics simulation

• Custom Sensitive Detector (Action)
• Tuning secondary production threshold
• Working with non default physics

● Appendix

17

alvaro.tolosa.delgado@cern.ch

What is full simulation

● Full detector simulation is a way of estimating the detector response to some
particular physical event (physics simulation) and the later processing of the
scored quantities to reconstruct the physical event (reconstruction and analysis)

● It consist of these successive steps:

1.Generation of primary particles

2.Simulation of particle transportation and physics (Geant4), and scoring of hits

3.Digitization, reconstruction

4.Analysis of reconstructed data, and comparison with MC truth

● Key4hep stack provides the necessary packages to run a full simulation

➢ DDG4 (ddsim, part of DD4hep) for physics simulation

➢ Gaudi as framework for anything else

➢ New packages may be added if needed

Developing in Key4hep 18

alvaro.tolosa.delgado@cern.ch

Detector description and physics simulation

The tools for a physics simulation are
● MC generators / particle gun
● DD4hep for detector description
● GEANT4 for physics & transport simulation

► Hadronic & EM physics
► Optical physics

Resources:
✔ Manuals of DD4hep, Geant4
✔ FCCee Detector Full Sim docs
✔ Key4hep tutorials
✔ Monthly full simulation meetings

Developing in Key4hep 19

https://dd4hep.web.cern.ch/dd4hep/page/users-manual/
https://geant4.web.cern.ch/docs/
https://fcc-ee-detector-full-sim.docs.cern.ch/
https://github.com/key4hep/key4hep-tutorials/tree/main
https://indico.cern.ch/category/16938/

alvaro.tolosa.delgado@cern.ch

Detector description in DD4hep

● Detector description consist of a hierarchical tree
of volumes, and a set of specifications
(materials, visualization, readout, fields, etc)

● The detector description is built out of XML
compact files by DD4hep

● The complexity of a subdetector may be handled
by a dedicated C++ function, called Detector
Constructor, which is called from the XML file
by the detector “type” tag. One compact file may
call several Detector Constructors

● DD4hep offers a genuine tree called Detector
Element tree, which links each placed volume to
an Detector Element

● See appendix for a list of good practices

world

subdetector_1

sector_1

layer_1

module_1

piece_1 piece_n

module_n

layer_n

sector_n

subdetector_n

Developing in Key4hep 20

alvaro.tolosa.delgado@cern.ch

Detector description in DD4hep

● Now lets see an example of compact file (XML) [link]

.

It is allowed to include other XML
files, for example containing the list
of materials or one single subdetector

Visual attributes may be defined here

Global constants associated to the
full detector.
world_x,y,z must be defined

Developing in Key4hep 21

https://github.com/atolosadelgado/tutorial_dd4hep_24

alvaro.tolosa.delgado@cern.ch

Detector description in DD4hep

● Now lets see an example of compact file (XML) [link]

➢ Readout structures correspond to the output data structure containing
the hits. Only 1 readout per subdetector, but several collections per
subdetector are allowed

➢ Region defines a secondary production threshold (as in Geant4)

Developing in Key4hep 22

https://github.com/atolosadelgado/tutorial_dd4hep_24

alvaro.tolosa.delgado@cern.ch

Detector description in DD4hep

● Now lets see an example of compact file (XML) [link]

Remember to close each tag!

Custom tags may be defined

There are reserved names for tags

This tag triggers the building of a
subdetector

Mandatory. Type corresponds to the
alias of the C++ Detector Constructor

Optional but very convenient tags

Developing in Key4hep 23

https://github.com/atolosadelgado/tutorial_dd4hep_24

alvaro.tolosa.delgado@cern.ch

Detector description in DD4hep

● Lets see an example of Detector Constructor (C++) [link]

Associate the createDetector function
to the detector type “MYCUBE_T”

The reserved names for scopes can be
accessed by DetElement class methods

Developing in Key4hep 24

https://github.com/atolosadelgado/tutorial_dd4hep_24

alvaro.tolosa.delgado@cern.ch

Physics simulation

● DD4hep provides an interface to Geant4 for
running physics simulation called ddsim

● The main ingredients given to ddsim are:

➢ Detector description, in DD4hep format

➢ Physics. Default is FTFp-Bertini + EM0
provided by Geant4

➢ Actions:

• Primary particle: from ddsim, G4, external

• Scoring, by means of a Sensitive Detector
Action (recommended)

● A steering file may specify these components

100 GeV proton in lead
1cm thick

Developing in Key4hep 25

alvaro.tolosa.delgado@cern.ch

Physics simulation

● Lets inspect a simple ddsim steering file [link]

Native ddsim particle gun for the generation
of primaries. Geant4 gun or GPS are
available, but their configuration must be
placed in a Geant4 macro file

Custom Sensitive Detector
Action to control what is
saved as output

Developing in Key4hep 26

https://github.com/atolosadelgado/tutorial_dd4hep_24

alvaro.tolosa.delgado@cern.ch

Custom sensitive detector actions

● Each subdetector have some volumes that are marked to be sensitive, that is,
they will register the interaction of particles with them (deposited energy,
time, position, particle type, etc) to be later saved into an output file

● DD4hep (ddsim) provides the machinery to run Geant4 simulations and
extract information (scoring) by means of Tracker or Calorimeter types of
sensitive detectors (SD)

● The native SD types determine the type of output data (tracker hit type, calo
hit type), and the action associated with them. There are some default actions
for each type [link], but an external custom action may be used instead [link]

SD Type Output data class Default SD Action Other native SD actions

Tracker edm4hep::SimTrackerHit Geant4TrackerWeightedAction Geant4TrackerAction,
Geant4OpticalTrackerAction

Calorimeter edm4hep::SimCalorimeterHit,
edm4hep::CaloHitContribution

Geant4ScintillatorCalorimeterAction Geant4CalorimeterAction,
Geant4OpticalCalorimeterAction

Developing in Key4hep 27

https://github.com/AIDASoft/DD4hep/blob/5922c749937ab1e9c1d92537af8aba95177de42f/DDG4/plugins/Geant4SDActions.cpp
https://github.com/atolosadelgado/tutorial_dd4hep_24/blob/main/plugins/neutronSDAction.cpp

alvaro.tolosa.delgado@cern.ch

Custom sensitive detector actions

● We can run a simulation using ddsim using the previous steering file
ddsim --compactFile ./compact/simple_detector.xml --runType batch --
steeringFile steering.py --outputFile mySimulation.root

● Using podio-dump command to check what is inside the ddsim output file
datamodel model definitions stored in this file: edm4hep

Frame categories in this file:
Name Entries

runs 1
metadata 1
events 10

################################### events: 0
####################################
Collections:
Name ValueType Size ID
----------- ---------------------- ------ --------
EventHeader edm4hep::EventHeader 1 d793ab91
MCParticles edm4hep::MCParticle 288 a1cba250
MY_HITS edm4hep::SimTrackerHit 1238 512bf904

May contain the segmentation
encoding

Primary particles
Hits in the sensitive volume

Developing in Key4hep 28

alvaro.tolosa.delgado@cern.ch

Custom sensitive detector actions

● We can change the SD type, from tracker to calorimeter, and run again the
simulation using the same command

● Using podio-dump command to check what is inside the ddsim output file:
datamodel model definitions stored in this file: edm4hep

Frame categories in this file:
Name Entries

runs 1
metadata 1
events 10

################################### events: 0
####################################
Collections:
Name ValueType Size ID
-------------------- ---------------------------- ------ --------
EventHeader edm4hep::EventHeader 1 d793ab91
MCParticles edm4hep::MCParticle 288 a1cba250
MY_HITS edm4hep::SimCalorimeterHit 52 512bf904
MY_HITSContributions edm4hep::CaloHitContribution 2049 7f8794a2

One readout, two
output collections

Developing in Key4hep 29

alvaro.tolosa.delgado@cern.ch

Understanding the production threshold

● A fraction of the showers are EM
showers, made up by gamma/e-/+

● Some EM processes have an infrared
divergence at secondaries production (the
lower the energy, the more secondaries
are created)

● A production threshold is used to prevent
the production of EM secondaries below
that limit. This threshold can be
expressed in distance (range) or energy

● Minimal threshold/range should be at
least half the smallest size of the
sensitive volume

Different thresholds for one proton
at 100 GeV in 1cm of lead

Developing in Key4hep 30

alvaro.tolosa.delgado@cern.ch

How to use non default physics

● Geant4 provides several builtin physics lists (PL) [link]
● Builtin physics list may be defined in the ddsim steering file
● Similarly as Geant4, new physics may be added on top of the builtin PL

Developing in Key4hep

Builtin Physics List

Register custom physics

Encapsulate addition of
custom physics on top of
the kernel PL

New Physics process
(Cerenkov process)

New Particle (optical
photon)

31

https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/html/index.html

alvaro.tolosa.delgado@cern.chDeveloping in Key4hep

Summary

● It is possible to use key4hep stack and work with local installations while
developing new features

● EDM4hep is an extensive set of classes used for full simulation studies, but it
is possible to add new classes if needed

● Podio API may be used to inspect and read files

● Follow typical C++ guidelines when developing Gaudi components

● When developing components of DD4hep,

➢ Build the geometry as a hierarchical tree of volumes

➢ Reuse ddsim Sensitive Detector types, and reimplent the process function
as a Sensitive Detector Action plugin

➢ Understand the subdetector when defining its region and limits

● Check the appendix for some notes about HTCondor and EOS

32

Thank you for your time

alvaro.tolosa.delgado@cern.chDeveloping in Key4hep

Developing in Key4hep

● What is Key4hep

● Gaudi, framework of FCC software

● Full simulation

● Appendix

● How to use HTCondor & EOS for heavy duty jobs

● Some recommendations when implementing the geometry of
a detector in DD4hep/Geant4

General recommendations when
using batch. HTCondor & EOS

Alvaro Tolosa-Delgado

Personal notes

Nov. 21th, 2023

alvaro.tolosa.delgado@cern.ch

Using batch. HTCondor and EOS

● The two main ingredients for batching are

● Executable files (bash, python) which encapsulate each task

● Condor job descriptor file, which launches the execution of the
different tasks

● At CERN, job submission is done from lxplus.cern.es user interface

● The job copy the user token, so they will have the same privileges

● It is recommended to leave the transfer of output files as the last step

● Avoid using AFS for large/numerous files

● Use EOS remote access for heavy duties (see next slide)
HTCondor and EOS

alvaro.tolosa.delgado@cern.ch

Using batch. Example of executable

#!/bin/bash

source /cvmfs/sw.hsf.org/key4hep/setup.sh

ddsim --compactFile /cvmfs/sw.hsf.org/key4hep/releases/2023-11-23/x86_64-
almalinux9-gcc11.3.1-opt/k4geo/0.19-qfldo5/share/k4geo/FCCee/CLD/compact/
CLD_o2_v05/CLD_o2_v05.xml --outputFile SIM_CLD_o2_v05_mu-
_20_deg_50_GeV_1000_evts.root --steeringFile
/afs/cern.ch/user/a/aaaaaaa/Public/ddsim_steering_CLD.py --random.seed 1
--numberOfEvents 1000 --enableGun --gun.particle mu- --gun.energy
50*GeV --gun.distribution uniform --gun.thetaMin 20*deg --gun.thetaMax
20*deg --random.enableEventSeed

Setup EOS entry point

export EOS_MGM_URL=root://eosuser.cern.ch

lets try non verbose copy of the file...

xrdcp -v --debug 2 --retry 5 --nopbar SIM_CLD_o2_v05_mu-
_20_deg_50_GeV_1000_evts.root
root://eosuser.cern.ch//eos/user/a/aaaaaaa/condor/comparison_cld_o2_cld_o3//
SIM_CLD_o2_v05_mu-_20_deg_50_GeV_1000_evts.root

HTCondor and EOS

alvaro.tolosa.delgado@cern.ch

Using batch. Example of condor job descriptor

executable = $(filename)

output = output.$(ClusterId).$(ProcId).out

error = error.$(ClusterId).$(ProcId).err

log = log.$(ClusterId).log

should_transfer_files = YES

transfer_input_files = /afs/cern.ch/user/a/aaaaaa/Public/ddsim_steering_CLD.py

transfer_output_files = ""

+JobFlavour = "microcentury"

+AccountingGroup = "group_u_FCC.local_gen"

queue filename matching files *.sh

Tips:

● Use the proper AccountingGroup (default is none)

● Pick the proper JobFlavour (and CPU & memory)

● Use the syntax queue xxxxx to execute all jobs, jobs will be executed faster

HTCondor and EOS

alvaro.tolosa.delgado@cern.ch

Using batch. EOS

HTCondor and EOS

General recommendations for
optimal geometry implementation

Alvaro Tolosa-Delgado

Personal notes

Nov. 21th, 2023

General ideas

world

subdetector_1 subdetector_n

Full geometry tree
● Each box corresponds to a volume object,

and each arrow corresponds to a
geometrical transformation
(position+rotation in the local coordinate
system of the mother volume)

● Each subdetector is expected to be
contained in an envelope volume. This
volume may be made of air as the world.

● Endcaps and barrel of a subdetector may
be considered as different subdetectors
(and may have different C++ detector
constructors). They can still share the
same readout.

Optimal geometry implementation

General ideas

world

subdetector_1

sector_1

layer_1 layer_n

sector_n

subdetector_n

Full geometry tree ● Each little piece of the detector can be
grouped into bundles according to the
symmetry.

● For example, if there is a symmetry
around Z-axis (phi), intermediate
envelopes (e.g., named sectors) which
will contain all the daughter volumes,
may be defined and placed many times
around Z-axis.

● If there is radial symmetry (that is, the
same layer placed several times), an
intermediate envelope volume which
contains a layer (and all the sub-volumes)
can be created and placed as many times
as needed

Optimal geometry implementation

General ideas

world

subdetector_1

sector_1

layer_1

module_1

piece_1 piece_n

module_n

layer_n

sector_n

subdetector_n

Full geometry tree
● Deeper grouping may be done if

symmetry allows it

● Physical volume ID is assigned to all
daughter volumes. If volume “sector_1”
has “Phi” bitfield “1”, all daughters will
have that bitfield set to “1”.

● Tip: create volumes and shapes outside
the loops that will iterate over
phi/theta/R.

● Liking Placed Volumes to DD4hep
detector elements may be done with care

Optimal geometry implementation

General considerations

● Please, keep the number of daughter volumes below
o(1000). Use intermediate envelope volumes to reduce this
number. This will speed up geometry construction,
navigation and reduce memory consumption.

● Please, do not abuse the assembly-type volume. During
translation of geometry, all daughters are placed directly
into the mother volume, assembly does not exist during the
simulation.

● Please think twice before using shapes such as Boolean
operations or tessellated solids, they will impact
performance

Optimal geometry implementation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

