

Software for PED studies

(About) Compute Resource Needs

7th FCC Physics Workshop 2024 Annecy, France January 31, 2024 G Ganis, CERN-EP

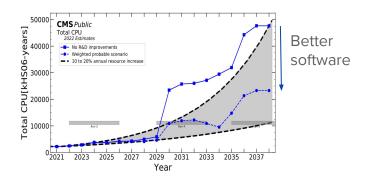
Outline

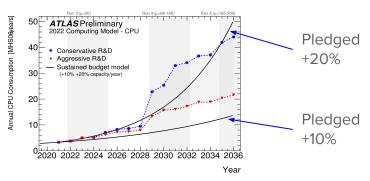
- Quick recap about the problem
- How it looks for FCC-ee
- A few remarks

Computing and HEP

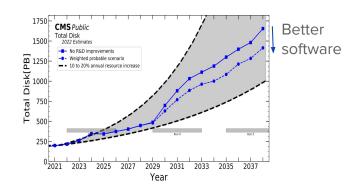
- Cost of IT-related components in HEP experiments, from software development to storage to processing power, constantly raised in the last decades
 - Starting with 90's, i.e. when computing has become significant
- Experiment workflows and their components have become more and more complex in many directions
 - Increasing expected data samples, hence increasing needs
 - Varying scenario of ressources
 - From single-core to multi-core to heterogeneous processing units
 - Evolution of storage systems from local to distributed and cache hierarchies
 - Continuous evolution/optimisation of software and data structures
- Estimating/predicting needs for computing resources has become crucial to plan for and secure them
- All this requires modeling

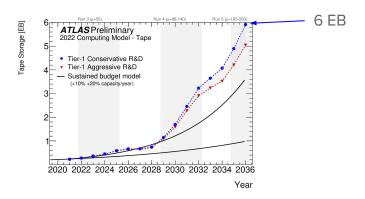
Modeling the resource needs


- Simple, in principle
 - Define the needs and the activities to satisfy them
 - **E.g.** 'MC samples for year Y_N ' requires the activities
 - Event generation, simulation, reconstruction
 - To each given activity corresponds a set of workflows, each defining a set of resources to be used, e.g.
 - Event generation on GPU producing output on local NAS
 - Simulation on the Grid producing output on the Grid
 - Reconstruction on HLT producing output on EOS
 - Put everything together to get the compute ressources needs
 - Taking into account experiment guidelines and policies
- All this depends on assumptions which may be or may be not well defined
- For LHC they reasonably well defined


Inspired by D Lange et al, CMS Computing Resources Modeling

Projections of resource needs of HL-LHC

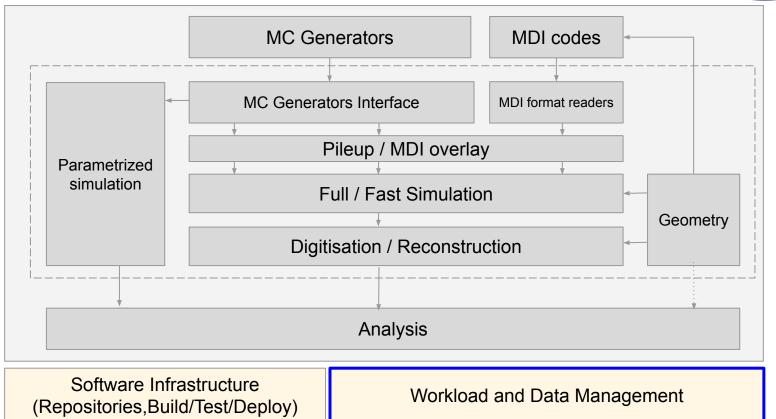



Processing power

Storage

CMS, ATLAS

How does it look for FCC-ee?


Modeling resources for a project "en devenir"

- Same reasoning, less precise assumptions, different purpose
 - Monte Carlo only
 - No data processing, calibration, ...
 - Several detector concepts
 - Several digitisation, reconstruction options, ...
- Several purposes: e.g.
 - Projects needs for pledged resources "in production"
 - Estimate the potential of a limited set of resources to set priorities in the short term

Workflows to support for FCC

What we have now

- CERN
 - EOS volumes
 - 500 TB for central productions (157 TB free, stil used by some CDR files)
 - 200 TB for analysis, starts to be used
 - CPU: 9000 HS06 on lxbatch
 - Integrated in iLCDirac
- Other sites integrated
 - BARI
 - CNAF
 - Glasgow (storage only)
- Some GPU resources
 - CERN, EuroHPC

Not yet limited, in general, but start reaching the boundaries

A first resources analysis for FCC-ee¹

- Assumptions
 - Nominal luminosities
 - \blacksquare {90, 12, 5, 0.2, 1.5} ab⁻¹ at \sqrt{s} = {91.2, 160, 240, 350, 365} GeV
 - MC reference sample = data sample
 - i.e. 3x10¹² visible Z decays, 10⁸ WW events, 10⁶ ZH events, 10⁶ tt events
- Event sizes (see next)
 - RAW: 1 2 MB/evt
 - AOB: 5 10 kB/evt
- Processing Power
 - CERN Openstack Core = 10-15 HEPSpec06
 - FCC currently assigned processing units = Computing Unit = 9000 HEPSpec06
 - CERN OpenStack node used for tests: 16 cores, 32 GB RAM
 - 1. Based on: GG, C Helsens: EPJ Plus (2022) 137:30

Event Sizes estimations¹

Table 2 Typical RAW event sizes in kB for the \mathbb{Z} run for the two baseline detector solutions [12] and the ALEPH detector [13]; the contribution of the final states originating from the Z exchange (Z decays) is singled out from the expected total (all events)

Readout channels	CLD		IDEA		ALEPH	
	1.9 G		2.8 G		1 M	
Sub-detector	Z decays (kB)	All events (kB)	Z decays (kB)	All events (kB)	Z decays (kB)	All events (kB)
Vertex	1.3	62	1.3	62		
Tracker	1.4	102	500	595		
Calorimeter	230	920*	500	2000*		
Muon	0.03	0.75	0.03	0.75		
Total	233	1085	1001	2658	120	550

RAW: 1 - 2 MB / evt

1. Based on: F. Grancagnolo: <u>Event Rates at Z-pole</u>, talk presented at 4th FCC PED workshop, Nov 2020

AOD: 5 - 10 kB / evt

Table 3 Typical FCC-ee event sizes, in kB, for different types of events processed through DELPHES in EDM4hep format (using the IDEA detector concept card with track covariance [14])

Process	\sqrt{s} (GeV)	Average size (kB)
$Z \rightarrow u\bar{u}, d\bar{d}, s\bar{s}$	91.2	4.9
$Z \to c\bar{c}$	91.2	5.2
$Z \rightarrow b\bar{b}$	91.2	5.5
$Z \rightarrow \tau^+ \tau^-$	91.2	1.2
Z decays, ALEPH, AOD	91.2	9.0
Z decays, ALEPH, MINI	91.2	2.2
ZH inclusive	240	8.9
ZZ inclusive	240	6.6
W ⁺ W ⁻ inclusive	240	6.4
$t\bar{t}$	350	13

Storage requirements

Run	\sqrt{s} (GeV)	Statistics	RAW data
Z	91.2	3×10^{12} Z decays (visible)	3–6 EB
ww	160	$10^8 \text{ W}^+\text{W}^-$ events	0.1–0.2 PE
ZH	240	10 ⁶ ZH events	1-2 TB
tī	350, 365	$10^6 t\bar{t}$ events	1-2 TB

≈HL-LHC

Table 5 AOD	data estimates for FCC-ee		
Run	\sqrt{s} (GeV)	Statistics	AOD data
Z	91.2	$3 \times 10^{12} \text{ Z decays (visible)}$	15–30 PB
ww	160	$10^8 \text{ W}^+\text{W}^-$ events	0.5-1 TB
ZH	240	10 ⁶ ZH events	5-10 GB
tī	350, 365	$10^6 \text{ t\bar{t}}$ events	5-10 GB

Computing requirements

 $\mu^{+}\mu^{-}$

KKMCee

Table 6 Time estimated to generate $q\bar{q}$, $\tau^+\tau^-$ and $\mu^+\mu^-$ events at the Z peak				
Generator	Process	100k/core (s)	Z sample/core	Z sample/9000 HS06 (days)
Pythia8	qā	148	$4 \times 10^9 \text{ s} = \sim 126 \text{ y}$	50–75
KKMCee	$qar{q}$	151	$4 \times 10^9 \text{ s} = \sim 126 \text{ y}$	50–75
KKMCee	$ au^+ au^-$	195	$0.25 \times 10^9 \text{ s} = ~8 \text{ y}$	3-4.5

Table 7	Time estimated	to simulate qq	events at the Z peak
---------	----------------	----------------	----------------------

334

Process	1k/core	Z sample/core	Z sample/9000 HS06
qq	20k s = 5 h 33 min	$6 \times 10^{13} \text{ s} = \sim 1.9 \times 10^6 \text{ y}$	$2.1-3.2\times10^3 \text{ y}$

 $0.44 \times 10^9 \text{ s} = \sim 14 \text{ y}$

5 - 7.7

2000-3000 years!

Table 8 Time estimated to simulate $q\bar{q}$ events at the Z peak with DELPHES

Process	100k/core	Z sample/core	Z sample/9000 HS06
qq	212 s	$6.4 \times 10^9 \text{ s} = \sim 202 \text{ y}$	0.22–0.34 y

Computing estimation remarks

- MC event generator can be challenging for full-scale production
 - Code optimisations and/or filtering techniques might be required
- Full simulation times have been cross-checked with ATLAS times for similar multiplicity
 - Recent Geant4 is up to a factor of 2 faster for ATLAS
 - Fast simulation techniques (see A Zaborowska talk) might help
 - Other option: selected simulation, i.e. non simulating what is never touched is not simulated
- Reconstruction
 - Between 10% (ALEPH) 30% (BELLE) of simulation
 - Could really benefit from using heterogenous resources

Putting all together ...

- The FCC-ee resource needs are of the same order of HL-LHC
 - o If HL-LHC solves the problems, FCC-ee gets it for free

Putting all together

Table 9 Number of $q\bar{q}$ events that can be produced per day with one computing unit and with the equivalent of the ATLAS computing resources

	Generation	Simulation	Reconstruction	DELPHES
Computing unit	$3.5 - 5.2 \times 10^{10}$	$2.6 - 3.9 \times 10^6$	$5.2 - 7.8 \times 10^6$	$2.4-3.6\times10^{10}$
ATLAS equivalent	$3.5 - 5.2 \times 10^{13}$	$2.6 - 3.9 \times 10^9$	$5.2 - 7.8 \times 10^9$	$2.4 - 3.6 \times 10^{13}$

- The resources currently available are O(1000) off for full simulation for FSR
 - Might be ok for parametrized simulation
- Numbers should be multiplied by the number of detector variations and analysis
 - Although some optimisation might be possible

What next: S&C

- Investigate possibility to get more resources e.g. spare cycles from WLCG and be ready to use efficiently all what becomes available
 - See L. Valentini, iLCDirac
- Increase quality and efficiency of code
 - Long and expensive process, in general.
 - New faster simulation techniques promising (see A. Zaborowska talk)
 - Need to understand how to go beyond the full sim training statistics
- Investigate possibility selective/filtered simulations
 - Filters at generation level
 - Simulate only parts of relevance
- Facilitate interplay targeted full simulation and parametrized simulation
 - E.g. Automatic/optimal creation of Delphes configurations

What next: Physics Performance, ...

Investigate (statistical) technologies to go beyond the rule of thumb

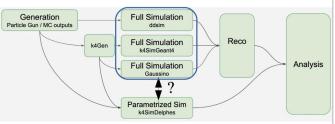
MC Sample = Expected data sample

reducing the number of events required

- Could be useful also in perspective, when data will be there
- LHC is testing at similar statistics
 - Use this to identify processes requiring more attention

Final remarks

- Available computing resources are limited and do not allow full statistics studies
 - This is rather normal, given the investment they would represent
- Improvements in the code are always possible, but not such to change completely the picture
- MC implements our knowledge, should now what to expect
- We should try to use all that to identify possible criticalities where to use the available resources


Thanks!

From full sim to parametrized sim to phys perf

Dreaming bigger

- Common reconstruction tools between detector concepts?
 - Quite challenging
 - > The optimal solution always depends on the specific features of the detector
 - > Stating the obvious: write reconstruction algorithm as generic as possible
 - > For simple cases: optimal solution for a given detector by tuning few parameters
 - For complex cases (e.g. Particle Flow): orchestration of modular tools that each detector implementation can arrange, tune or completely overwrite
- Ease (automatize?) the translation between detector performance evaluation from full sim and parametrized simulation
 - Allows us to sweep detector free parameters, probe their comprehensive impact on physics performance
- >

Detector Software Strategy and Plans

Brieuc Francois

13