
 today
Juraj Smieško ()

Annecy, 01 Feb 2024

FCCAnalyses
CERN

7th FCC Physics Workshop

1

https://hep-fcc.github.io/FCCAnalyses/
https://home.cern/
https://indico.cern.ch/event/1307378/

FCCAnalyses Scope

Goal of the framework is to aid the users in obtaining the desired physics results from the

reconstructed objects

Framework requirements:

Efficiency — Make quick turn-around possible

Flexibility — Allow heavy customization

Ease of use — Should not be hard to start using

Scalable — Seamlessly handle from small to large datasets

2

Set of common software packages, tools, and standards for different Detector concepts

Common for FCC, CLIC/ILC, CEPC, EIC, …

Individual participants can mix and match their stack

Main ingredients:

Data processing framework:

Event data model:

Detector description:

Software distribution:

Key4hep

Gaudi

EDM4hep

DD4hep

Spack

3

https://key4hep.github.io/key4hep-doc/
https://gaudi.web.cern.ch/gaudi/
https://edm4hep.web.cern.ch/
https://dd4hep.web.cern.ch/dd4hep/
https://spack.io/

EDM4hep I.
Describes event data with the set of standard objects.

Specification in a single YAML file

Generated with the help of Podio

4

https://github.com/AIDASoft/podio

EDM4hep II.
Example object:

Current version: v0.10.3

Objects can be extended / new created

Bi-weekly discussion:

#------------- CalorimeterHit
edm4hep::CalorimeterHit:
 Description: "Calorimeter hit"
 Author : "F.Gaede, DESY"
 Members:
 - uint64_t cellID //detector specific (geometrical) cell id.
 - float energy //energy of the hit in [GeV].
 - float energyError //error of the hit energy in [GeV].
 - float time //time of the hit in [ns].
 - edm4hep::Vector3f position //position of the hit in world coordinates in [mm].
 - int32_t type //type of hit. Mapping of integer types to names via collection parameters "CalorimeterHitTypeNames" an

1
2
3
4
5
6
7
8
9

10
11

Indico

5

https://indico.cern.ch/category/11461/

Datasets
Plethora of processes are pre-generated and available from EOS

Two main production campaigns in use:

Spring 2021

Winter 2023

Processes are identified by its name, e.g.: p8_ee_WW_ecm240

The production Database browsable at:

Example:

EOS directory:

/eos/experiment/fcc/...

Generation handled by

Heads up: Will change soon (,)

fcc-physics-events.web.cern.ch

Delphes events, IDEA, FCCee, winter 2023

EventProducer

Dirac iLCDirac

6

http://fcc-physics-events.web.cern.ch/
http://fcc-physics-events.web.cern.ch/fcc-physics-events/FCCee/winter2023/Delphesevents_IDEA.php
https://github.com/HEP-FCC/EventProducer
https://github.com/DIRACGrid/DIRAC
https://gitlab.cern.ch/CLICdp/iLCDirac/ILCDIRAC

EOS Space

Various intermediate files of common interest can be stored at:

/eos/experiment/fcc/ee/analyses_storage/...

in four subfolders:

BSM

EW_and_QCD

flavor

Higgs_and_TOP

Access and quotas:

Read access is is granted to anyone

Write access needs to be granted: Ask your convener :)

Total quota for all four directories is 200TB

ATM only part of the quota is allocated

7

ROOT RDataFrame

Describes processing of data as actions on table columns

Defines of new columns

Filter rules

Result definitions (histogram, graph)

The actions are lazily evaluated

Multi threading is available out of the box

Optimized for bulk processing

Allows integration of existing C++ libraries

8

Functional Approach
The operations on the dataframe happen with small stateless functions:

or with structs, which have internal state:

float getMass(const ROOT::VecOps::RVec<edm4hep::ReconstructedParticleData>& in) {
ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double>> result;

for (auto & p: in) {
ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double>> tmp;

 tmp.SetPxPyPzE(p.momentum.x, p.momentum.y, p.momentum.z, p.energy);
 result+=tmp;
 }

return result.M();
}

1
2
3
4
5
6
7
8
9

10
11

/// Get the number of particles in a given hemisphere (defined by it's angle wrt to axis). Returns 3 values: total, charged, neutra
struct getAxisN {
public:

getAxisN(bool arg_pos=0);
 ROOT::VecOps::RVec<int> operator() (const ROOT::VecOps::RVec<float> & angle,

const ROOT::VecOps::RVec<float> & charge);
private:

bool _pos; /// Which hemisphere to select, false/0=cosTheta<0 true/1=cosTheta>0. Default=0
};

1
2
3
4
5
6
7
8
9

9

Analysis as a graph
Analysis can be imagined as a graph composed out of building blocks

To generate graph of your analysis:

fccanalyses run analysis_script.py --graph

10

Analysis as a graph

11

Analysis as a graph

12

Integration with Existing Tools
Boundary between reconstruction and analysis blurred

Especially for full-sim

Sometimes it is more advantageous to use Gaudi Algorithm [Juan's talk]

Many tools/libraries created over the years

Most are integrated into the Key4hep stack

RDataFrame C++ based, integrated into Python

Available libraries:

ROOT — together with RDataFrame

ACTS — track reconstruction tools

ONNX — neural network exchange format

FastJet — jet finding package

DD4hep — detector description

Delphes — fast simulation

13

Distribution
Latest release of FCCAnalyses is v0.8.0

How to get FCCAnalyses:

As a package in the stable/nightlies Key4hep stack

Allows to quickly put together small analysis

fccanalysis run ana_script.py + analysers.h
As a package in the nightlies Key4hep stack

By checking out master branch

Allows greater customization

Requires discipline

Hint: Keep your master in sync with upstream (use rebase or merge)

Main branch master → main
Main development branch should be always buildable

Build in spack / key4hep-spack (~200 packages, ~2h)

CVMFS + Docker/Podman

Key4hep platforms: CentOS 7, AlmaLinux 9, Ubuntu 22.04

14

Ecosystem

Analysis spread through two repositories:

Repository of common tools and algorithms

General analysis code in analyzers

Steering of the analysis (RDataFrame)

Access to the dataset (meta)data

Running over large datasets / on batch

Experimetal machinery for case studies

Main place for the abstracts

Contains very specific analysis code

Or prototypes of tools of common interest to be eventually moved to

FCCAnalysis

(Proto)package repository

FCCAnalyses

FCCeePhysicsPerformance

15

https://github.com/HEP-FCC/FCCAnalyses
https://github.com/HEP-FCC/FCCeePhysicsPerformance

Analysis Architecture I.
One can write and run the analysis in several ways

Managed mode: fccanalysis run my_ana.py
The RDataFrame frame is managed by the framework

User provides Python analysis script with compulsory attributes

Libraries are loaded automatically

Dataset metadata are loaded from remote location — CVMFS/HTTP server

Batch submission on HTCondor

Customization: Possible at the level of analyzer functions

Intend for: Quick analysis, no advanced analyzer functions

16

Writing an analyzer function
Analyzer function is a C++ function or struct

Typically and analyzer is a struct which operates on an EDM4hep object

Optional dependencies for analyzers can be: FastJet, DD4hep, ACTS and ONNX

 needs to be aware of the analyzer function

Provided as a string

Loaded and JITed by the ROOT.gInterpreter
Compiled in the library

ROOT RDataFrame

17

https://root.cern/doc/master/classROOT_1_1RDataFrame.html

Workflow
The complete analysis in managed mode is divided into three steps ():

analysis_stage1.py , ... — pre-selection stages, analysis dependent, usually runs on batch

analysis_final.py — final selection, produces final variables

analysis_plots.py — produces plots from histograms/TTrees

or into two with the help of Histmaker ():

The pre-selection stages and final stage are combined together

Plotting step

Disclaimer: Plotting facilities are rudimentary, improvements are welcome :)

example

example

18

https://github.com/HEP-FCC/FCCAnalyses/blob/master/examples/FCCee/higgs/mH-recoil/mumu/
https://hep-fcc.github.io/fcc-tutorials/master/fast-sim-and-analysis/fccanalyses/doc/starterkit/FccFastSimAnalysis/Readme.html#

Analysis Architecture II.
One can write and run an analysis in several ways

Standalone mode: python my_ana.py
The RDataFrame frame is managed by the user

Can leverage the FCCAnalyses library of analyzer functions

The analysis can be written as a Python script or C++ program

Loading of the libraries is handled by the user

Dataset metadata have to be handled manually

Batch submission is not provided

Customization: Creation and steering of the RDataFrame

Intended for: Advanced users

Ntupleizer style:

Intend is to create flat trees and continue without the frameworks help

19

Improvements
Making FCCAnalyses more robust framework

Global reorganization of the internal structure --- fccanalysis + sub-commands

Synchronized logging functionality across the whole framework (Python + RDataFrame + ROOT)

Created man pages (terminal + web)

General safety and robustness

Reviving FCCAnalyses package in Key4hep stack

Testing the whole analysis chain

20

fccanalysis sub-commands
[jsmiesko@death-machine FCCAnalyses (master =)]$ fccanalysis --help

...

sub-commands:
 sub-command one of the available sub-commands

 init generate a RDataFrame based FCC analysis
 build build and install local analysis
 test test whole or a part of the analysis framework
 pin pin fccanalyses to the current version of Key4hep stack
 run run a RDataFrame based FCC analysis

 final run a RDataFrame based FCC analysis final configuration
 plots run a RDataFrame based FCC analysis plot configuration

1
2
3
4
5
6
7
8
9

10
11
12
13

21

Logging functionality
Select verbosity level:

Get something out of the analyzer:

[jsmiesko@death-machine FCCAnalyses (master =)]$ fccanalysis --help
usage: fccanalysis [-h] [-v | -vv | -vvv] sub-command ...

FCCAnalyses v0.8.0

options:
 -h, --help show this help message and exit
 -v, --verbose make output verbose
 -vv, --more-verbose make output more verbose
 -vvv, --most-verbose make output even more verbose

1
2
3
4
5
6
7
8
9

10

#include "RLogger.hxx"
R__LOG_INFO(ROOT.Detail.RDF.RDFLogChannel(), "Info message")

1
2

22

Manual pages

analysis-script

-h, --help

--files-list FILES_LIST [FILES_LIST ...]

--output OUTPUT

--nevents NEVENTS

--test

--bench

--ncpus NCPUS

FCCANALYSIS-RUN(1) fccanalysis-run man page FCCANALYSIS-RUN(1)

NAME

fccanalysis-run - run FCC analysis

SYNOPSIS

fccanalysis run [-h | --help] [--files-list FILES_LIST [FILES_LIST ...]] [--output OUTPUT] [--nevents

NEVENTS] [--test] [--bench] [--ncpus NCPUS] [-g] [--graph-path GRAPH_PATH] analysis-script

DESCRIPTION

fccanalysis-run will run analysis provided in the analysis file. The analysis itself can be divided

into several stages if desired. For all those stages fccanalysis-run is used.

When using fccanalysis-run the analysis is running in the managed mode, where the RDataFrame is

steered by the framework and users can control some aspects of the running with additional global

attributes, see fccanalysis-script(8).

OPTIONS

Path to analysis script.

Prints short help message and exits.

Specify input file to bypass the processList.

Specify output file name to bypass the processList and or outputList, default output.root.

Specify max number of events to process.

Run over the test file.

Output benchmark results to a JSON file.

S t b f th d

23

Testing FCCAnalyses package

Multiple FCCAnalyses tests running every morning

Plan to integrate them into Key4hep validation

source "${FCCTESTS_STACK}"

RNDMSTR="$(sed 's/[-]//g' < /proc/sys/kernel/random/uuid | head -c 12)"
WORKDIR="${FCCTESTS_TMPDIR}/fccanalyses-stack-full-analysis-${RNDMSTR}"

mkdir -p "${WORKDIR}" || exit 1
cd "${WORKDIR}" || exit 1

fccanalysis run ${FCCANALYSES}/../share/examples/examples/FCCee/higgs/mH-recoil/mumu/analysis_stage1.py || exit 1
fccanalysis run ${FCCANALYSES}/../share/examples/examples/FCCee/higgs/mH-recoil/mumu/analysis_stage2.py || exit 1
fccanalysis final ${FCCANALYSES}/../share/examples/examples/FCCee/higgs/mH-recoil/mumu/analysis_final.py || exit 1
fccanalysis plots ${FCCANALYSES}/../share/examples/examples/FCCee/higgs/mH-recoil/mumu/analysis_plots.py

1
2
3
4
5
6
7
8
9

10
11
12

24

Work in Progress
Unlocking full potential of ROOT RDataFrame and EDM4hep inside FCCAnalyses framework

EDM4hep RDataSource

Sample metadata (Dirac)

Import FCCAnalyses / analysis compartmentalization

Standard library of the analyzers

Slow or fast decay of the EDM4hep in the analysis

Test / Validation facilities

Event visualization

25

EDM4hep RDataSource
Preserving EDM4hep Associations in RDataFrame

Podio/EDM4hep has several layers

Highest layer provides associations

Having associations greatly improves writing/understanding of the

analyzers

Majority of the analyzers needs adjustment

For more details about EDM4hep, see Thomas' talk

26

Sample metadata

Sample output path example

/eos/experiment/fcc/prod/fcc/ee/winter2023/91.19gev/Zbb/idea/delphes/00012345/

See also Lorenzo's talk

27

import FCCAnalyses
import FCCAnalyses
import ROOT

ROOT.gROOT.SetBatch(True)

def main():
'''

 Example analysis entry point
 '''

 sample = FCCAnalyses.Sample('p8_ee_WW_ecm240')

 FCCAnalyses.register_analyzers('examples/FCCee/import/AddAnalyzers.h')

 dframe = fccana.get_dataframe(sample)
 dframe2 = dframe.Define("particles", "gen_particles()")
 dframe3 = dframe2.Define("particles_pt", "MCParticle::get_pt(particles)")
 hist = dframe3.Histo1D("particles_pt")
 hist.Print()

 canvas = ROOT.TCanvas("canvas", "", 450, 450)
 hist.Draw()
 canvas.Print('test.pdf')

if __name__ == '__main__':
 main()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

28

FCCAnalyses library
Vertexing

ACTS vertex finder

Event variables

Calorimeter hit/cluster variables

Reconstructed/MC particle operations

Flavour tagging

Jet clustering/constituents

29

Event visualization
Pythia 8 | ee → ZH @ 240 GeV

To visualize your MC Particle tree, do:

source /cvmfs/sw.hsf.org/key4hep/setup.sh

edm4hep2json -l Particle -n 10

/eos/experiment/fcc/ee/generation/DelphesEvents/winter2023/IDEA/p8_ee_WW_ecm240/events_059793334.root -o

p8_ee_WW_ecm240.json

visit: and upload your .json filehttps://key4hep.github.io/dmx/

30

https://key4hep.github.io/dmx/

Event visualization

Pythia 8 | ee → ZH @ 240 GeV

31

Documentation
There are several sources of documentation

FCC Tutorials:

Focused on providing a tutorial on a specific topic

Code reference:

Provides details about implementation of individual analyzers

Manual pages:

Info about commands directly in the terminal: man fccanalysis
,

https://hep-fcc.github.io/fcc-tutorials/

https://hep-fcc.github.io/FCCAnalyses/doc/latest/index.html

FCCAnalyses website FCCSW website

32

https://hep-fcc.github.io/fcc-tutorials/
https://hep-fcc.github.io/FCCAnalyses/doc/latest/index.html
https://hep-fcc.github.io/FCCAnalyses/
https://hep-fcc.github.io/FCCSW/

Conclusions & Outlook
The combination of EDM4hep and RDataFrame works

Possibility to integrate range of existing libraries

ML integration need more thought

Writing an analysis without compilation prefered

Started focusing on the full simulation detector studies

Access to the detector description through the framework

Bi-weekly meeting focused on framework development, but more importantly on the analysis development

First meeting: 7 Feb 2024, 11:00 AM

See you at the

meeting!
Babyface from Toy Story, Pixar

33

Backup

34

Ecosystem

Analysis spread through two repositories:

Repository of common tools and algorithms

General analysis code in analyzers

Steering of the analysis (RDataFrame)

Access to the dataset (meta)data

Running over large datasets / on batch

Experimetal machinery for case studies

Main place for the abstracts

Contains very specific analysis code

Or prototypes of tools of common interest to be eventually moved to

FCCAnalysis

(Proto)package repository

FCCAnalyses

FCCeePhysicsPerformance

35

https://github.com/HEP-FCC/FCCAnalyses
https://github.com/HEP-FCC/FCCeePhysicsPerformance

FCCAnalyses vs. Coffea/Coffea-casa
Provides similar set of features to FCCAnalyses

Dataframe in coffea, Orchestration in coffea-casa

User interface purely pythonic

Integrated into python package ecosystem

FCCAnalysis purpose build for FCC

Integration with SWAN and Dask

36

FCCAnalyses batch submissions
FCCAnalyses allows users to submit their jobs onto HTCondor

It bootstraps itself with use of scripts in subprocesses

Framework creates two files

Shell script with fccanalysis command

Condor configuration file

There is also possibility to add user provided Condor parameters

Condor environment now isolated from machine where the submission was done

Revised tracking across chunks/stages done with the variable in the ROOT file

37

Code formatting
Currently, there is wide range of styles used

End goal: Make the analyzers better organized

They are building blocks of the analysis

Created CI to check every commit

LLVM Style selected based on popularity

Only changed lines are checked

38

Updated vertexing
Vertexing done with the help of code from Franco B.

Introduces dependency on Delphes

Introduces new analyzers: SmearedTracksdNdx , SmearedTracksTOF

Simplifies Delphes–EDM4hep unit gymnastic

Adds examples for Bs to Ds K

39

Building of FCCAnalyses
FCCAnalyses is a package in the Key4hep stack

Advanced users can work directly on their forks

Allows to keep the analysis ''cutting edge''

Requires discipline

Added helper sub-command: fccanalysis build

Current distribution mechanisms:

Using released version in Key4hep stack

Separate git repository + stable Key4hep stack

Separate git repository + nightlies stack

40

Key4hep stack pin
FCCAnalyses is developed on top of Key4hep stack

Sometimes depends on specific version of the package

Added helper sub-command: fccanalysis pin

Will pin the analysis to a specific version of the Key4hep stack

There is no patch mechanism in the Key4hep stack

41

