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Hadronisation
➤Tuned to parton showers

Matching
➤See A. Karlberg QED

➤A lot of work 
to be done! 
(See e.g. 
Reutgens, 
Frixione, 
Stagnitto)
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4 Event selection and jet substructure extraction
Jets with pT > 700 GeV and |y| < 1.7 are selected for the measurement. For such a rapidity
selection requirement, both AK4 and AK8 jets are fully contained in the tracker acceptance. To
construct the primary Lund jet plane, we follow the prescription described in Section 1. The
anti-kT jet constituents are reclustered using the CA algorithm. While the original anti-kT jet is
clustered using neutral and charged particle-flow candidates, the Lund jet plane is calculated
using only its charged-particle constituents. Due to the approximate isospin symmetry of the
strong force, the salient features of the substructure of the jet do not depend on the electric
charge of the final-state hadrons. Although the charged-particle jet substructure is not infrared
and collinear safe, this choice does not affect the comparison to theoretical calculations of the
primary Lund jet plane density [12]. For the measurement of the Lund jet plane, the charged-
particle constituents are required to have pT > 1 GeV to further suppress the contributions
of residual pileup particles and to avoid the decrease in track reconstruction efficiency below
1 GeV. In Fig. 3, we show two distinct slices of the primary Lund jet plane density measured in
data. The detector-level predictions of HERWIG7 CH3 and PYTHIA8 CP5 are shown in the same
panel. Their detector-level predictions envelop the measured distribution.
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Figure 3: Detector-level distributions of data and Monte Carlo simulated events generated with
PYTHIA8 CP5 and HERWIG7 CH3. The lower panels show the ratio of the predictions with
respect to the data. Only statistical uncertainties are included here.

➤ showers do an amazing job on 
many observables for LHC 

➤ various places see 10–30% 
discrepancies between 
showers and data 

➤ A lot of work is required to 
meet the precision target of the 
FCC!

4

Lund Plane

HERWIG7 CH3

PYTHIA8 CP5

detector level

Are current showers good enough?
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Logarithmically-accurate Parton Showers
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PARTON SHOWERS = energy degradation via an iterated sequence of 
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simple algorithm to include the dominant radiative corrections at 
all orders for any observable! 

LL = leading logsΣ(O < e−L) = exp (−LgLL(β0αsL) + …)
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Σ(O < e−L) = exp (−LgLL(β0αsL) + gNLL(β0αsL) + …)
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simple algorithm to include the dominant radiative corrections at 
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For : 
Next-to-Leading Logarithms needed for quantitative predictions!

Q ∼ 50 − 10000 GeV, β0αsL ∼ 0.3 − 0.5

??
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What is available in Shower Monte Carlo generators?
➤ Showers routinely used to interpret LHC 

(and LEP) data are not NLL!

1=
N

LL

Dasgupta et al. 2002.11114 

https://arxiv.org/abs/2002.11114
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➤ Showers routinely used to interpret LHC 
(and LEP) data are not NLL! 

➤ Many groups are independently formulating 
new showers with NLL accuracy for e+e−

1=
N

LL

PANSCALES

SHERPA

Herren et al.  2208.06057

Dasgupta et al. 2002.11114 

DEDUCTOR
Nagy&Soper, 
2011.04777 

CVOLVER
Forshaw et. al,  

2003.06400 

What can be available in Shower Monte Carlo generators?

https://arxiv.org/abs/2208.06057
https://arxiv.org/abs/2002.11114
https://arxiv.org/abs/2011.04777
https://arxiv.org/abs/2003.06400
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From LL to NLL: what’s new?
➤ NLL accuracy achieved for lepton collider processes ensuring parton showers 

reproduce the QCD matrix element in the presence of soft gluons separated in 
angle

ln kt /Q

y

When doing a new 
emission, previously emitted gluons do 

not change!
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➤ NLL accuracy achieved for lepton collider processes ensuring parton showers 
reproduce the QCD matrix element in the presence of soft gluons separated in 
angle

ln kt /Q

y

When doing a new 
emission, previously emitted gluons do 

not change!

➤ Lepton - hadron colliders (and VBF): PANSCALES, van Beekveld, SFR 2305.08645  

➤ Hadron - hadron colliders:  
colour-singlet in PANSCALES (van Beekveld, SFR et al., 2205.02237 + 
2207.09467), and DEDUCTOR (Nagy&Soper, 0912.4534) 
generic processes: ongoing efforts in ALARIC and PANSCALES

From LL to NLL: what’s new?

https://arxiv.org/abs/2305.08645
https://arxiv.org/abs/2205.02237
https://arxiv.org/abs/2207.09467
https://arxiv.org/abs/0912.4534
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➤ NLL accuracy achieved for generic collider processes ensuring parton showers 
reproduce the QCD matrix element in the presence of soft gluons separated in 
angle

ln kt /Q

y

When doing a new 
emission, previously emitted gluons do 

not change!

➤ Subleading-colour corrections in 
PANSCALES, as parton showers are derived in 
the large number of colour limit 

   

[K. Hamilton et al., 2011.10054 ]

CF =
CA

2
−

1
2Nc

Standard colour factors New PANSCALES algotithm

 of the leading jetM0 ∼ p⊥

M1 ∼ τ
M0.5 = M0M1

From LL to NLL: what’s new?

https://arxiv.org/abs/2011.10054
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➤ NLL accuracy achieved for generic collider processes ensuring parton showers 
reproduce the QCD matrix element in the presence of soft gluons separated in 
angle

ln kt /Q

y

When doing a new 
emission, previously emitted gluons do 

not change!

➤ Subleading-colour corrections in 
PANSCALES, [K. Hamilton et al., 2011.10054 ] 

➤ Spin correlations in PANSCALES, [A. Karlberg 
et al., 2103.16526 + 2111.01161 ], based on 
the Collin-Knowles (’88) algorithm (also 
available in HERWIG7, Richardson &Webster 
1807.01955)
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From LL to NLL: what’s new?

https://arxiv.org/abs/2011.10054
https://arxiv.org/abs/2103.16526
https://arxiv.org/abs/2111.01161
https://arxiv.org/abs/1807.01955
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Code available from 
https://gitlab.com/

panscales/

e+e– thrust at =91 GeVs

Code available from https://
gitlab.com/shoeche/pyalaric 

PanScales for DIS and VBF 
2305.08645, van Beekveld, SFR

SHERPA

PANSCALES

Comparison with current data

https://gitlab.com/panscales/panscales-0.X,
https://gitlab.com/panscales/panscales-0.X,
https://arxiv.org/abs/2305.08645
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A closer look to the thrust in  collisionse+e−

e+e– thrust at =91 GeVs

Code available from https://
gitlab.com/shoeche/pyalaric 

e+e– thrust at =10 TeVs

NLL parton 
shower

LL parton 
shower

SHERPA

DEDUCTOR

NLL/LL 
discrepancies at 

larger scales
Info code https://

pages.uoregon.edu/soper/
deductor
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Azimuthal angle between leading jets (DY)

NLL showers

LL showers

PanScales for 
colour singlet: 

2207.09467, van 
Beekveld, SFR, 

Hamilton, Salam 
Soto Ontoso, Soyez, 

Verheyen:

pp →mℓℓ = 500 GeV

NLL/LL discrepancies at 
larger scales

Δϕ12

⃗pJ1
T

⃗pJ2
T

Z
Δϕ12

PANSCALES

https://arxiv.org/abs/2207.09467
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SFR, Hamilton, Karlberg, Salam, Scyboz, 
Soyez, 2307.11142Towards NNLL accuracy

NNLL precision must be reached for percent-level precison!

ln kt /Q

y

At NLL, the parton 
shower can handle emissions widely 

separated in angle

https://arxiv.org/abs/2307.11142
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NNLL precision must be reached for percent-level precison!

ln kt /Q

y
Soft emission — inclusion of real + virtual corrections 

➤ any pair of soft emissions with commensurate energy and angles should be 
produced with the correct [double-soft] matrix element  

➤ probability for any single soft emission should be NLO accurate 
➤ NB: Vincia and Sherpa groups have also explored inclusion of the double-soft 

current; part of novelty here is doing so to get the log-accuracy benefit.

Towards NNLL accuracy SFR, Hamilton, Karlberg, Salam, Scyboz, 
Soyez, 2307.11142

https://arxiv.org/abs/2307.11142
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ln kt /Q

y
Soft emission — inclusion of real + virtual corrections 

➤ any pair of soft emissions with commensurate energy and angles should be 
produced with the correct [double-soft] matrix element  

➤ probability for any single soft emission should be NLO accurate 
➤ NB: Vincia and Sherpa groups have also explored inclusion of the double-soft 

current; part of novelty here is doing so to get the log-accuracy benefit.

10

This (+NLO matching, see Karlberg’s talk) should maintain NLL accuracy and further achieve  

➤ NNDL accuracy for [subjet] multiplicities, i.e. terms , ,  

➤ Next-to-Single-Log (NSL) accuracy for non-global logarithms, e.g. energy in a slice, all terms  
and  (at leading- ) 

NB: done using PanGlobal, so far just in 

αn
s L2n αn

s L2n−1 αn
s L2n−2

αn
s Ln

αn
s Ln−1 Nc

e+e− → qq̄

Towards NNLL accuracy SFR, Hamilton, Karlberg, Salam, Scyboz, 
Soyez, 2307.11142

NNLL precision must be reached for percent-level precison!

https://arxiv.org/abs/2307.11142
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➤ a given two-emission configuration can 
come from several shower histories 

➤ accept a given emission with exact 
double-soft  divided by shower’s 
effective double-soft matrix element 
summed over the histories h that could 
have produced that configuration

M(DS)
exact

11

2

a

b

...

1 2

1̃

1 2

... ...
1̃

1 2

... ...
2̃

1 2

... ...
2̃

FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.

NLL shower, the splitting probability was given by

dPn!n+1

d ln v
=

X

{ı̃,|̃}2dip

Z
d⌘̄

d�
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↵s(kt)
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✓
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↵s(kt)Kcmw

2⇡

◆

⇥ [f(⌘̄)akPı̃!ik(ak) + f(�⌘̄)bkP|̃!jk(bk)] . (2)

Here Pı̃!ik(ak) is a leading-order DGLAP splitting func-
tion, ⌘̄ = 1

2 ln ak/bk + const., with the constant arranged
so that ⌘̄ = 0 when the emission bisects the dipole in
the event centre-of-mass frame, and f(⌘̄) = 1/(1 + e

�2⌘̄)
is a partitioning function. Additionally, the MS cou-
pling, ↵s(kt), uses at least 2-loop running, and Kcmw =�
67/18� ⇡

2
/6

�
CA � 5/9nf [61].

In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|

2

P
h |Mshower,h|

2
. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
(12)
shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F

(12)
ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
(12)
shower > F

(12)
ds , then we swap the colour connection

with probability

Pswap =
F

(12)
shower � F

(12)
ds

F
(12)
shower

. (4)

We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
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cepted with probability

Paccept =
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where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
(12)
shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F

(12)
ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
(12)
shower > F

(12)
ds , then we swap the colour connection

with probability

Pswap =
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(12)
shower � F

(12)
ds

F
(12)
shower

. (4)

We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|
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P
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. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
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shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F
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ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
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Pswap =
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We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
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where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
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shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F
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ds for the full
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We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 6. Left: Plot of the NLO �K correction, Eq. (6), for three variants of the PanGlobal shower, as a function of the
rapidity ⌘̄1 of a soft emission from a back-to-back dipole. Kcmw is given for reference. Centre/right: impact of di↵erent parts of
the double-soft correction on the NSL contributions for the transverse energy in a slice, showing the di↵erence between PG�=0

(centre) or PG�= 1
2
(right) and a reference NSL-accurate shower.

start with the upper left panel, which shows the q̄g1g2q channel, where the particle labelled 1 is always the one with
larger transverse momentum, and the order of the particles corresponds to the order of the colour connections. Of
particular interest is the region of negative �y21, i.e. where the rapidity ordering is opposite to the colour ordering.
In this region the true double-soft matrix element is strongly suppressed, as one would expect. However, the shower’s
suppression is parametrically stronger. The pattern is similar in the top-right panel for the opposite q̄g2g1q colour
ordering at positive �y21. Had we attempted to correct the shower for each colour-channel separately, there would
have been regions where the acceptance probability in Eq. (3) would have become arbitrarily large. Instead the
approach of Eq. (4) ensures that we only have to make an occasional swap of the colour ordering. The lower panels
show the analogous curves for double-soft quark production.

c. �K and evaluation of its impact

Recall that for a soft emission probability (from a q̄q dipole) as given in Eq. (2), NSL accuracy requires an extra
(1+�K↵s/2⇡) correction factor. Fig. 6 (left) shows the size of the �K contribution, Eq. (6), for our three PanGlobal
shower variants. It is plotted as a function of the rapidity, ⌘̄1 of the soft emission, in the case of a back-to-back parent
dipole. The shower with the largest correction is PG�= 1

2
, but for the configuration shown here, that correction

remains relatively modest, at most a factor of about (1 + ↵s) for ⌘̄1 = 0. The correction for PG�=0 is much smaller.
The PGsdf

�=0 variant has the property that �K is identically zero, a consequence of the fact that the shower’s second
emission probability is independent of the rapidity of the first emission, causing the two terms in Eq. (6) to exactly
cancel.

Fig. 6 (centre and right) illustrates the separate impact of the double-soft real matrix element and �K corrections
on the slice observable of Fig. 3, for PG�=0 (centre) and PG�= 1

2
(right). It shows the di↵erence in NSL contributions

between the PG� result and an NSL-accurate reference, which is taken to be the PGsdf
�=0 shower including the full

double-soft corrections. The red curve shows the di↵erence with no double soft corrections at all, illustrating e.g.
the fortuitous near agreement with the full NSL result for PG�= 1

2
. Turning on the real double-soft corrections (blue

curve) introduces a highly visible e↵ect, bringing the PG�=0 result in better agreement with the full NSL but causing
a significant departure from NSL in the PG�= 1

2
case. Including also the �K correction (green curve) results in

agreement with the NSL result for both showers. The sign of the �K e↵ect is consistent with the left-hand plot: �K

is always positive, and the resulting higher emission probability reduces the value of ⌃.
Finally, let us comment on the numerical accuracy of our results. For � = �0.35, we find ⌃nsl/⌃sl = 4.832± 0.004

(PGsdf
�=0), 4.817 ± 0.010 (PG�=0) and 4.787 ± 0.014 (PG�= 1

2
), where the quoted uncertainties are purely statistical,

as obtained from a cubic polynomial extrapolation ↵s ! 0. These numbers are roughly within 2� of each other.
Note however that for PG�= 1

2
, we found the convergence with ↵s to be slower, making the extraction numerically

more challenging. Accordingly, one should also keep in mind that this comes with additional systematic e↵ects. For
example, we observed that varying the set of ↵s values yields variations in ⌃nsl/⌃sl of the order of 0.01. We also
estimated the e↵ect of varying �K within its numerical uncertainty to be of order 0.005. In all cases, we see a
convincing agreement to within 1% relative to the size of the NSL correction.
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non-trivial ⌘̄ dependence in Eq. (2) and the way in which
it connects with the overall event momentum Q. There-
fore we need to generalise Kcmw ! K(�1̃,ab), where the

full K is a function of the kinematics of 1̃ and of the
opening angle of the ab dipole. In the same vein as the
MC@NLO [65] and POWHEG [66, 67] methods and their
MINLO [68, 69] extension, the correct NLO normalisa-
tion for the emission is given by

K(�1̃,ab) = V (�1̃,ab) +

Z
d�ps

12/1̃|M
(ps)

12/1̃
|
2
��(ps,1)

1̃
. (5)

Here, V is the exact QCD 1-loop contribution for a
single soft emission, renormalised at scale µ = kt,1̃;

d�ps
12/1̃

|M
(ps)

12/1̃
|
2 is the product of shower phase space and

matrix element associated with real 1̃ ! 12 branching,

including double-soft corrections; and �(ps,1)

1̃
is the co-

e�cient of ↵s/(2⇡) in the fixed-order expansion of the
shower Sudakov factor. To aid in the evaluation of
K(�1̃,ab) we make use of two main elements: firstly, in
the soft-collinear limit,K(�1̃,ab) ! Kcmw; secondly, both

V (�1̃,ab) and �(ps,1)

1̃
are independent of the rapidity of

1̃, as long as 1̃ is soft and (for �(ps,1)

1̃
) kept at some fixed

value of the evolution scale. We can therefore reformulate
Eq. (5) as K = Kcmw +�K, with

�K =

Z

r
d�(ps)

12/1̃
|M

(ps)

12/1̃
|
2
�

Z

rsc

d�(ps)

12/1̃sc
|M

(ps)

12/1̃sc
|
2
. (6)

In the second term, 1̃sc is at the same shower scale v

as 1̃, but shifted by a constant in rapidity with respect
to ab so as to be in the soft-collinear region, wherein
K(�1̃sc,ab

) ! Kcmw. The labels r and rsc indicate a reg-
ularisation of the phase space, which should be equivalent
between the two terms. Specifically, we separate MDS in
Eq. (3) into correlated and uncorrelated parts, respec-
tively those involving CFCA versus C2

F colour factors for
the q̄ggq matrix element. For the correlated part, we cut
on the relative transverse momentum of 1 and 2, while for
the uncorrelated part, we cut on the transverse momen-
tum with respect to the ab dipole and impose |�y12| <

�ymax. In practice we tabulate �K as a function of
✓ab, ⌘̄1̃, and �1̃, though one could also envisage on-the-
fly evaluation. We incorporate �K in Eq. (2), through
a multiplicative factor 1 + tanh[↵s

2⇡ �K(1� ak)(1� bk)].
This form keeps the correction positive and bounded. It
also leaves the shower unmodified in the hard-collinear
region.

We study the above approach with several variants of
the PanGlobal shower. All have been adapted relative
to Ref. [2] with regards to the precise way in which they
restore momentum conservation after the map of Eq. (1).
This was motivated by the discovery that in higher-order
shower configurations involving three similarly collinear
hard particles, the original recoil prescription could lead
to unwanted long-distance kinematic side e↵ects. Details
are given in the supplemental material [60], § 1.

FIG. 2. The result of Eq. (7) for three variants of the Pan-
Global shower without double-soft corrections (left) and with
them (right). The latter are consistent with NNDL accuracy.
The bands represent statistical errors in an ↵s ! 0 extrapo-
lation based on four finite ↵s values.

We will consider three variants of the PanGlobal
shower: two choices of the ordering variable, ⇠ kt✓

� with
� = 0 (PG�=0) and 1/2 (PG�=1/2), and also a “split-
dipole-frame” � = 0 variant (PGsdf

�=0), which replaces

f(±⌘̄) ! f(±⌘) in Eq. (2), with ⌘ = 1
2 log ak/bk. The

⌘ = 0 transition region bisects the dipole in its rest frame
rather than the event frame. This makes the 1̃ ! 12
branching independent of the 1̃ rapidity in the dipole
frame, resulting in �K = 0. Illustrative plots of �K

and its impact are given in Ref. [60], § 2 c.
All results, both with and without double-soft correc-

tions, include NLO 2-jet matching [70], which is required
for the NNDL/NSL accuracy that we aim for. Spin cor-
relations [71, 72] are turned o↵, because we have yet
to integrate them with the double-soft corrections. The
double-soft corrections are implemented at large-Nc, in
such a way as to preserve the full-Nc NLL/NDL accu-
racies obtained in Ref. [73] for global observables and
multiplicities. All events have (positive) unit weight.
To test the enhanced logarithmic accuracy of the

shower, the first observable that we consider is the Lund
subjet multiplicity [43] in e

+
e
�

! qq̄ events. This is
a perturbatively calculable observable that is conceptu-
ally close to the experimentally important total charged-
particle multiplicity. For a centre-of-mass energy Q and
a transverse momentum cuto↵ kt, the subjet multiplicity
has a double-logarithmic resummation structure ↵

n
sL

2n

with L = ln kt/Q. The PanGlobal showers already re-
produce terms up to NDL ↵

n
sL

2n�1. The addition of the
double-soft corrections and matching [70] is expected to
bring NNDL accuracy, ↵n

sL
2n�2. To test this, in Fig. 2,

we examine

lim
↵s!0

Nps �Nnndl

↵sNdl

����
fixed ↵sL

2

, (7)

where Nps is the parton-shower result and Nnndl (Ndl) is
the known analytic NNDL (DL) result [43]. The ↵s ! 0
limit follows the procedure from earlier work [2]. Eq. (7)

no double soft with double soft
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opening angle of the ab dipole. In the same vein as the
MC@NLO [65] and POWHEG [66, 67] methods and their
MINLO [68, 69] extension, the correct NLO normalisa-
tion for the emission is given by

K(�1̃,ab) = V (�1̃,ab) +

Z
d�ps

12/1̃|M
(ps)

12/1̃
|
2
��(ps,1)

1̃
. (5)

Here, V is the exact QCD 1-loop contribution for a
single soft emission, renormalised at scale µ = kt,1̃;

d�ps
12/1̃

|M
(ps)

12/1̃
|
2 is the product of shower phase space and

matrix element associated with real 1̃ ! 12 branching,

including double-soft corrections; and �(ps,1)

1̃
is the co-

e�cient of ↵s/(2⇡) in the fixed-order expansion of the
shower Sudakov factor. To aid in the evaluation of
K(�1̃,ab) we make use of two main elements: firstly, in
the soft-collinear limit,K(�1̃,ab) ! Kcmw; secondly, both

V (�1̃,ab) and �(ps,1)

1̃
are independent of the rapidity of

1̃, as long as 1̃ is soft and (for �(ps,1)

1̃
) kept at some fixed

value of the evolution scale. We can therefore reformulate
Eq. (5) as K = Kcmw +�K, with

�K =

Z

r
d�(ps)

12/1̃
|M

(ps)

12/1̃
|
2
�

Z

rsc

d�(ps)

12/1̃sc
|M

(ps)

12/1̃sc
|
2
. (6)

In the second term, 1̃sc is at the same shower scale v

as 1̃, but shifted by a constant in rapidity with respect
to ab so as to be in the soft-collinear region, wherein
K(�1̃sc,ab

) ! Kcmw. The labels r and rsc indicate a reg-
ularisation of the phase space, which should be equivalent
between the two terms. Specifically, we separate MDS in
Eq. (3) into correlated and uncorrelated parts, respec-
tively those involving CFCA versus C2

F colour factors for
the q̄ggq matrix element. For the correlated part, we cut
on the relative transverse momentum of 1 and 2, while for
the uncorrelated part, we cut on the transverse momen-
tum with respect to the ab dipole and impose |�y12| <

�ymax. In practice we tabulate �K as a function of
✓ab, ⌘̄1̃, and �1̃, though one could also envisage on-the-
fly evaluation. We incorporate �K in Eq. (2), through
a multiplicative factor 1 + tanh[↵s

2⇡ �K(1� ak)(1� bk)].
This form keeps the correction positive and bounded. It
also leaves the shower unmodified in the hard-collinear
region.

We study the above approach with several variants of
the PanGlobal shower. All have been adapted relative
to Ref. [2] with regards to the precise way in which they
restore momentum conservation after the map of Eq. (1).
This was motivated by the discovery that in higher-order
shower configurations involving three similarly collinear
hard particles, the original recoil prescription could lead
to unwanted long-distance kinematic side e↵ects. Details
are given in the supplemental material [60], § 1.

FIG. 2. The result of Eq. (7) for three variants of the Pan-
Global shower without double-soft corrections (left) and with
them (right). The latter are consistent with NNDL accuracy.
The bands represent statistical errors in an ↵s ! 0 extrapo-
lation based on four finite ↵s values.

We will consider three variants of the PanGlobal
shower: two choices of the ordering variable, ⇠ kt✓

� with
� = 0 (PG�=0) and 1/2 (PG�=1/2), and also a “split-
dipole-frame” � = 0 variant (PGsdf

�=0), which replaces

f(±⌘̄) ! f(±⌘) in Eq. (2), with ⌘ = 1
2 log ak/bk. The

⌘ = 0 transition region bisects the dipole in its rest frame
rather than the event frame. This makes the 1̃ ! 12
branching independent of the 1̃ rapidity in the dipole
frame, resulting in �K = 0. Illustrative plots of �K

and its impact are given in Ref. [60], § 2 c.
All results, both with and without double-soft correc-

tions, include NLO 2-jet matching [70], which is required
for the NNDL/NSL accuracy that we aim for. Spin cor-
relations [71, 72] are turned o↵, because we have yet
to integrate them with the double-soft corrections. The
double-soft corrections are implemented at large-Nc, in
such a way as to preserve the full-Nc NLL/NDL accu-
racies obtained in Ref. [73] for global observables and
multiplicities. All events have (positive) unit weight.
To test the enhanced logarithmic accuracy of the

shower, the first observable that we consider is the Lund
subjet multiplicity [43] in e

+
e
�

! qq̄ events. This is
a perturbatively calculable observable that is conceptu-
ally close to the experimentally important total charged-
particle multiplicity. For a centre-of-mass energy Q and
a transverse momentum cuto↵ kt, the subjet multiplicity
has a double-logarithmic resummation structure ↵

n
sL

2n

with L = ln kt/Q. The PanGlobal showers already re-
produce terms up to NDL ↵

n
sL

2n�1. The addition of the
double-soft corrections and matching [70] is expected to
bring NNDL accuracy, ↵n

sL
2n�2. To test this, in Fig. 2,

we examine

lim
↵s!0

Nps �Nnndl

↵sNdl

����
fixed ↵sL

2

, (7)

where Nps is the parton-shower result and Nnndl (Ndl) is
the known analytic NNDL (DL) result [43]. The ↵s ! 0
limit follows the procedure from earlier work [2]. Eq. (7)
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FIG. 3. Determinations of ⌃(ps)
nsl /⌃sl for the transverse en-

ergy in a slice. Left: parton showers without double-soft cor-
rections illustrating NSL di↵erences between them. Middle:
with double-soft corrections but nreal

f = 0 (cf. text for de-
tails), for comparison with the Gnole NSL code. Right: with
full double-soft corrections, showing NSL agreement between
the three PanGlobal showers.

is expected to be zero if the parton shower is NNDL ac-
curate. The original showers, without double-soft correc-
tions (left), clearly di↵er from each other and from zero,
by up to ⇠ 100%. With double-soft corrections turned on
(right), all three PanGlobal variants are consistent with
zero, i.e. with NNDL accuracy, to within ⇠ 1%.

Next we turn to the study of non-global logarithms at
leading colour. These were recently calculated at NSL ac-
curacy [45, 46, 48], ↵n

sL
n�1, and are available in the cor-

responding “Gnole” code [46]. We again consider e
+
e
�

events, and sum the transverse energies (Et) of particles
with |y| < 1, where y is the rapidity with respect to an
axis determined by clustering the event to two jets with
the Cambridge algorithm [74]. The fraction of events
where the sum is below some Et,max is denoted by ⌃ and
for a given shower we define

⌃(ps)
nsl = lim

↵s!0

⌃(ps)
� ⌃sl

↵s

����
fixed ↵sL

, L ⌘ ln
Et,max

Q
. (8)

Fig. 3 (left) shows ⌃(ps)
nsl /⌃sl for our three PanGlobal vari-

ants without double-soft corrections. As expected, they
di↵er.

Fig. 3 (middle) compares our PGsdf
�=0 shower with

double-soft corrections to the NSL Gnole code, show-
ing good agreement, within < 1%. Gnole has nf = 0
in the real contribution and counterterm, but keeps the
full nf = 5 in the running of the coupling and inclusive
Kcmw (“nreal

f = 0”). Among our showers it is relatively

straightforward to make the same choice with PGsdf
�=0, in

particular because �K = 0. Also, Gnole uses the thrust
axis, while we use the jet axis; this is beyond NSL as the
two axes coincide for hard three-parton events.

Fig. 3 (right) shows the results from our three Pan-
Global showers with complete (full-nf ) double-soft cor-
rections included. They agree with each other to within

FIG. 4. Distribution of energy in a slice |y| < 0.5 for the
PanGlobal shower without double-soft corrections (left) and
with them (right). The bands represent renormalisation scale
variation, with NLO scale-compensation enabled only for the
results with double-soft corrections.

1% of the NSL contribution, providing a powerful test of
the consistency of the full combination of the double-soft
matrix element and �K across the variants. That plot
also provides the first NSL calculation of non-global log-
arithms to include the full nf dependence. An extended
selection of results and comparisons is provided in § 3 of
Ref. [60].

We close with a brief examination of the phenomeno-
logical implications of the advances presented here. We
consider e+e� ! Z

⇤
! jets at Q = 2TeV. This choice is

intended to help gauge the size of non-global e↵ects at the
energies being probed today at the LHC. Fig. 4 shows re-
sults for the distribution of energy flow in a rapidity slice,
defined with respect to the 2-jet axis, without double-soft
corrections (left) and with them, i.e. at NSL accuracy
(right). It uses the NODS colour scheme, which while
not full-Nc accurate for non-global logarithms, numeri-
cally coincides with the full-Nc SL results of Refs. [38–
40], to within their percent-level numerical accuracy [73].
With a central scale choice (solid lines), the impact of the
NSL corrections is modest. This is consistent with the
observation from Fig. 3 that the NLL PanGlobal showers
are numerically not so far from NSL accurate. However,
the NSL double-soft corrections do bring a substantial
reduction in the renormalisation scale uncertainty, from
about 10% to just a few percent. Conclusions are similar
for H⇤

! gg.

The results here provide the first demonstration that
it is possible to augment parton-shower accuracy be-
yond NDL/NLL. Specifically, our inclusion of real and
virtual double-soft e↵ects has simultaneously brought
NNDL/NSL accuracy for two phenomenologically impor-
tant classes of observable: multiplicities, and energy flows
as relevant for isolation. It has also enabled the first
leading-colour, full-nf predictions for NSL non-global
logarithms. Overall, our methods and results represent a
significant step towards a broader future goal of general
NNLL accuracy in parton showers.
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with double-soft corrections but nreal

f = 0 (cf. text for de-
tails), for comparison with the Gnole NSL code. Right: with
full double-soft corrections, showing NSL agreement between
the three PanGlobal showers.

is expected to be zero if the parton shower is NNDL ac-
curate. The original showers, without double-soft correc-
tions (left), clearly di↵er from each other and from zero,
by up to ⇠ 100%. With double-soft corrections turned on
(right), all three PanGlobal variants are consistent with
zero, i.e. with NNDL accuracy, to within ⇠ 1%.

Next we turn to the study of non-global logarithms at
leading colour. These were recently calculated at NSL ac-
curacy [45, 46, 48], ↵n

sL
n�1, and are available in the cor-

responding “Gnole” code [46]. We again consider e
+
e
�

events, and sum the transverse energies (Et) of particles
with |y| < 1, where y is the rapidity with respect to an
axis determined by clustering the event to two jets with
the Cambridge algorithm [74]. The fraction of events
where the sum is below some Et,max is denoted by ⌃ and
for a given shower we define
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nsl = lim
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Fig. 3 (left) shows ⌃(ps)
nsl /⌃sl for our three PanGlobal vari-

ants without double-soft corrections. As expected, they
di↵er.

Fig. 3 (middle) compares our PGsdf
�=0 shower with

double-soft corrections to the NSL Gnole code, show-
ing good agreement, within < 1%. Gnole has nf = 0
in the real contribution and counterterm, but keeps the
full nf = 5 in the running of the coupling and inclusive
Kcmw (“nreal

f = 0”). Among our showers it is relatively

straightforward to make the same choice with PGsdf
�=0, in

particular because �K = 0. Also, Gnole uses the thrust
axis, while we use the jet axis; this is beyond NSL as the
two axes coincide for hard three-parton events.

Fig. 3 (right) shows the results from our three Pan-
Global showers with complete (full-nf ) double-soft cor-
rections included. They agree with each other to within

FIG. 4. Distribution of energy in a slice |y| < 0.5 for the
PanGlobal shower without double-soft corrections (left) and
with them (right). The bands represent renormalisation scale
variation, with NLO scale-compensation enabled only for the
results with double-soft corrections.

1% of the NSL contribution, providing a powerful test of
the consistency of the full combination of the double-soft
matrix element and �K across the variants. That plot
also provides the first NSL calculation of non-global log-
arithms to include the full nf dependence. An extended
selection of results and comparisons is provided in § 3 of
Ref. [60].

We close with a brief examination of the phenomeno-
logical implications of the advances presented here. We
consider e+e� ! Z

⇤
! jets at Q = 2TeV. This choice is

intended to help gauge the size of non-global e↵ects at the
energies being probed today at the LHC. Fig. 4 shows re-
sults for the distribution of energy flow in a rapidity slice,
defined with respect to the 2-jet axis, without double-soft
corrections (left) and with them, i.e. at NSL accuracy
(right). It uses the NODS colour scheme, which while
not full-Nc accurate for non-global logarithms, numeri-
cally coincides with the full-Nc SL results of Refs. [38–
40], to within their percent-level numerical accuracy [73].
With a central scale choice (solid lines), the impact of the
NSL corrections is modest. This is consistent with the
observation from Fig. 3 that the NLL PanGlobal showers
are numerically not so far from NSL accurate. However,
the NSL double-soft corrections do bring a substantial
reduction in the renormalisation scale uncertainty, from
about 10% to just a few percent. Conclusions are similar
for H⇤

! gg.

The results here provide the first demonstration that
it is possible to augment parton-shower accuracy be-
yond NDL/NLL. Specifically, our inclusion of real and
virtual double-soft e↵ects has simultaneously brought
NNDL/NSL accuracy for two phenomenologically impor-
tant classes of observable: multiplicities, and energy flows
as relevant for isolation. It has also enabled the first
leading-colour, full-nf predictions for NSL non-global
logarithms. Overall, our methods and results represent a
significant step towards a broader future goal of general
NNLL accuracy in parton showers.
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FIG. 3. Determinations of ⌃(ps)
nsl /⌃sl for the transverse en-

ergy in a slice. Left: parton showers without double-soft cor-
rections illustrating NSL di↵erences between them. Middle:
with double-soft corrections but nreal

f = 0 (cf. text for de-
tails), for comparison with the Gnole NSL code. Right: with
full double-soft corrections, showing NSL agreement between
the three PanGlobal showers.

is expected to be zero if the parton shower is NNDL ac-
curate. The original showers, without double-soft correc-
tions (left), clearly di↵er from each other and from zero,
by up to ⇠ 100%. With double-soft corrections turned on
(right), all three PanGlobal variants are consistent with
zero, i.e. with NNDL accuracy, to within ⇠ 1%.

Next we turn to the study of non-global logarithms at
leading colour. These were recently calculated at NSL ac-
curacy [45, 46, 48], ↵n

sL
n�1, and are available in the cor-

responding “Gnole” code [46]. We again consider e
+
e
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events, and sum the transverse energies (Et) of particles
with |y| < 1, where y is the rapidity with respect to an
axis determined by clustering the event to two jets with
the Cambridge algorithm [74]. The fraction of events
where the sum is below some Et,max is denoted by ⌃ and
for a given shower we define
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ants without double-soft corrections. As expected, they
di↵er.

Fig. 3 (middle) compares our PGsdf
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double-soft corrections to the NSL Gnole code, show-
ing good agreement, within < 1%. Gnole has nf = 0
in the real contribution and counterterm, but keeps the
full nf = 5 in the running of the coupling and inclusive
Kcmw (“nreal

f = 0”). Among our showers it is relatively

straightforward to make the same choice with PGsdf
�=0, in

particular because �K = 0. Also, Gnole uses the thrust
axis, while we use the jet axis; this is beyond NSL as the
two axes coincide for hard three-parton events.
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rections included. They agree with each other to within
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results with double-soft corrections.

1% of the NSL contribution, providing a powerful test of
the consistency of the full combination of the double-soft
matrix element and �K across the variants. That plot
also provides the first NSL calculation of non-global log-
arithms to include the full nf dependence. An extended
selection of results and comparisons is provided in § 3 of
Ref. [60].

We close with a brief examination of the phenomeno-
logical implications of the advances presented here. We
consider e+e� ! Z

⇤
! jets at Q = 2TeV. This choice is

intended to help gauge the size of non-global e↵ects at the
energies being probed today at the LHC. Fig. 4 shows re-
sults for the distribution of energy flow in a rapidity slice,
defined with respect to the 2-jet axis, without double-soft
corrections (left) and with them, i.e. at NSL accuracy
(right). It uses the NODS colour scheme, which while
not full-Nc accurate for non-global logarithms, numeri-
cally coincides with the full-Nc SL results of Refs. [38–
40], to within their percent-level numerical accuracy [73].
With a central scale choice (solid lines), the impact of the
NSL corrections is modest. This is consistent with the
observation from Fig. 3 that the NLL PanGlobal showers
are numerically not so far from NSL accurate. However,
the NSL double-soft corrections do bring a substantial
reduction in the renormalisation scale uncertainty, from
about 10% to just a few percent. Conclusions are similar
for H⇤

! gg.

The results here provide the first demonstration that
it is possible to augment parton-shower accuracy be-
yond NDL/NLL. Specifically, our inclusion of real and
virtual double-soft e↵ects has simultaneously brought
NNDL/NSL accuracy for two phenomenologically impor-
tant classes of observable: multiplicities, and energy flows
as relevant for isolation. It has also enabled the first
leading-colour, full-nf predictions for NSL non-global
logarithms. Overall, our methods and results represent a
significant step towards a broader future goal of general
NNLL accuracy in parton showers.
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➤ NLL shower about to become the new standard, but not enough for the FCC!  

➤ benefits of LL → NLL include reduced uncertainties (reliable estimate uncertainties) 

➤ for realistic applications we also need massive quarks (Deductor and Alaric already 
include them), at least NLO matching, and tuning 

➤ Higher log accuracy is one of the next frontiers 

➤ double-soft (+ virtual) corrections: NNDL multiplicity and NSL non-global logarithms 

➤ Percent precision also requires these aspects not addressed here 

➤ NLO and NNLO Matching 

➤ QED shower  

➤ Leading power corrections (e.g. in PDF’s, Frixione&Webber 2309.15587 )
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Summary and Conclusions

https://arxiv.org/abs/2309.15587

