Recent Progresses in Parton Showers with higher logarithmic accuracy

7th FCC Physics Workshop

31st January 2024, Laboratoire d'Annecy de physique des particules

Hadronisation

πΚπρρ....ΚππΚππ

1 GeV-

Hadronisation

πΚπρρ....ΚππΚππ

1 GeV-

Parton Showers

- Energy degradation of hard particles produced during the collision
- Recent and future developments to reach percent level precision

Hadronisation

πΚπρρ....ΚππΚππ

1 GeV-

Matching

See A. Karlberg

Parton Showers

- Energy degradation of hard particles produced during the collision
- Recent and future developments to reach percent level precision

Hadronisation

> Tuned to parton showers

QED

► A lot of work to be done! (See e.g. Reutgens, Frixione, Stagnitto)

Are current showers good enough?

- showers do an amazing job on many observables for LHC
- various places see 10–30% discrepancies between showers and data
- ► A lot of work is required to meet the precision target of the FCC!

Logarithmically-accurate Parton Showers

<u>PARTON SHOWERS</u> = energy degradation via an iterated sequence of

$$L = \ln \frac{Q}{\Lambda} \gg 1$$

simple algorithm to include the dominant radiative corrections at all orders for any observable!

$$\exp\left(-Lg_{LL}(\beta_0\alpha_s L) + \dots\right)$$

Logarithmically-accurate Parton Showers

<u>PARTON SHOWERS</u> = energy degradation via an iterated sequence of

$$L = \ln \frac{Q}{\Lambda} \gg 1$$

simple algorithm to include the **dominant radiative corrections** at all orders for any observable!

$$\exp\left(-Lg_{LL}(\beta_0\alpha_s L) + g_{NLL}(\beta_0\alpha_s L) + \dots\right)$$

For $Q \sim 50 - 10000 \,\text{GeV}, \, \beta_0 \alpha_s L \sim 0.3 - 0.5$: Next-to-Leading Logarithms needed for quantitative predictions!

Logarithmically-accurate Parton Showers

<u>PARTON SHOWERS</u> = energy degradation via an iterated sequence of

$$L = \ln \frac{Q}{\Lambda} \gg 1$$

simple algorithm to include the dominant radiative corrections at all orders for any observable!

 $\sum (O < e^{-L}) = \exp \left(-Lg_{LL}(\beta_0 \alpha_s L) + g_{NLL}(\beta_0 \alpha_s L) + \alpha_s g_{NNLL}(\beta_0 \alpha_s L) + \dots\right)$

For $Q \sim 50 - 10000 \,\text{GeV}$, $\beta_0 \alpha_s L \sim 0.3 - 0.5$: Next-to-Leading Logarithms needed for <u>%-level</u> precision!

What is available in Shower Monte Carlo generators?

Showers routinely used to interpret LHC (and LEP) data are **not NLL**!

What can be available in Shower Monte Carlo generators?

- (and LEP) data are **not NLL**!

angle

► NLL accuracy achieved for <u>lepton collider</u> processes ensuring parton showers reproduce the QCD matrix element in the presence of soft gluons separated in

> When doing a new emission, previously emitted gluons do not change!

angle

- Lepton hadron colliders (and VBF): PANSCALES, van Beekveld, SFR 2305.08645
- Hadron hadron colliders: colour-singlet in PANSCALES (van Beekveld, SFR et al., <u>2205.02237</u> + <u>2207.09467</u>), and **DEDUCTOR** (Nagy&Soper, <u>0912.4534</u>) generic processes: ongoing efforts in ALARIC and PANSCALES

► NLL accuracy achieved for <u>lepton collider</u> processes ensuring parton showers reproduce the QCD matrix element in the presence of soft gluons separated in

angle

Subleading-colour corrections in **PANSCALES**, as parton showers are derived in the large number of colour limit [K. Hamilton et al., <u>2011.10054</u>]

> NLL accuracy achieved for <u>generic collider</u> processes ensuring parton showers reproduce the QCD matrix element in the presence of soft gluons separated in

> When doing a new emission, previously emitted gluons do not change!

angle

- Subleading-colour corrections in **PANSCALES**, [K. Hamilton et al., <u>2011.10054</u>]
- Spin correlations in PANSCALES, [A. Karlberg] et al., <u>2103.16526</u> + <u>2111.01161</u>], based on the **Collin-Knowles** ('88) algorithm (also available in HERWIG7, Richardson & Webster 1807.01955)

> NLL accuracy achieved for <u>generic collider</u> processes ensuring parton showers reproduce the QCD matrix element in the presence of soft gluons separated in

> When doing a new emission, previously emitted gluons do not change!

Comparison with current data

A closer look to the thrust in e^+e^- collisions

Silvia Ferrario Ravasio

Towards NNLL accuracy

NNLL precision must be reached for percent-level precison!

SFR, Hamilton, Karlberg, Salam, Scyboz, Soyez, <u>2307.11142</u>

At NLL, the parton shower can handle emissions widely separated in angle

Towards NNLL accuracy

NNLL precision must be reached for percent-level precison!

Soft emission — inclusion of **real** + **virtual** corrections

- any pair of soft emissions with commensurate energy and angles should be produced with the correct [double-soft] matrix element
- probability for any <u>single soft emission</u> should be NLO accurate
- NB: Vincia and Sherpa groups have also explored inclusion of the double-soft current; part of novelty here is doing so to get the log-accuracy benefit.

Towards NNLL accuracy

NNLL precision must be reached for percent-level precison!

Soft emission — inclusion of **real** + **virtual** corrections

- any pair of soft emissions with commensurate energy and angles should be produced with the correct [double-soft] matrix element
- probability for any <u>single soft emission</u> should be NLO accurate
- ► NB: Vincia and Sherpa groups have also explored inclusion of the double-soft current; part of novelty here is doing so to get the log-accuracy benefit.

<u>This</u> (+NLO matching, see Karlberg's talk) <u>should maintain NLL accuracy and further achieve</u>

- > NNDL accuracy for [subjet] multiplicities, i.e. terms $\alpha_s^n L^{2n}$, $\alpha_s^n L^{2n-1}$, $\alpha_s^n L^{2n-2}$
- and $\alpha_s^n L^{n-1}$ (at leading- N_c)

NB: done using PanGlobal, so far just in $e^+e^- \rightarrow q\bar{q}$

> Next-to-Single-Log (NSL) accuracy for non-global logarithms, e.g. energy in a slice, all terms $\alpha_s^n L^n$

7th FCC Physics Workshop

1. Real corrections: pair of soft emissions

- accept a given emission with exact

SFR, Hamilton, Karlberg, Salam, Scyboz, *Soyez*, <u>2307.11142</u>

Virtual corrections in parton showers

► For a soft emission

99

Virtual corrections in parton showers

 \succ For a soft emission

► <u>Catani</u>, <u>Marchesini</u> and <u>Webber</u> defined the "CMW" scheme for the coupling in the shower [*Nucl.Phys.B* 349 (1991) 635-654]

 $\alpha_s^{\text{CMW}} = \alpha_s \left(1 + \frac{\alpha_s}{2\pi} K_{\text{CMW}} \right)$

Virtual corrections in parton showers

 \succ For a soft emission

► <u>Catani</u>, <u>Marchesini</u> and <u>Webber</u> defined the "CMW" scheme for the coupling in the shower [Nucl.Phys.B 349 (1991) 635-654]

At fixed "shower variables", but the rapidity and p_{\perp} of the jet can vary

This ensures

$$V_{PS} + \int R_{PS} = \frac{\alpha_s}{2\pi} K_{CMW}$$

"on average"

2. Improving virtual corrections for soft emissions

NNDL subjet multiplicity

Silvia Ferrario Ravasio

7th FCC Physics Workshop

- > NNDL ($\alpha_s^n L^{2n-2}$) analytic resummation = Medves, Soto Ontoso, Soyez, 2205.02861
- $\succ \alpha_{s} \rightarrow 0$ limit to isolate NNDL terms.
- Double soft necessary for NNDL agreement

NSL for the energy flow in a rapidity slice

$$\equiv \ln \frac{E_{t,\max}}{Q}$$

7th FCC Physics Workshop

► NSL ($\alpha_s^n L^{n-1}$) = Banfi, Dreyer, Monni, 2104.06416, 2111.02413 ("Gnole")

[NB: see also Becher, Schalch, Xu, 2307.02283]

- NSL agreement with Gnole for $n_f^{\text{real}} = 0$
- > First large- N_c full- n_f results for NSL non-global logs

S.F.R., Hamilton, Karlberg, Salam, Scyboz, Soyez <u>2307.11142</u>

NSL phenomenology outlook

S.F.R., Hamilton, Karlberg, Salam, Scyboz, Soyez 2307.11142

- Energy flow in slice between two 1 TeV jets
- Double-soft reduces uncertainty band

Uncertainty here is estimated varying the renormalisation scale

Silvia Ferrario Ravasio

Summary and Conclusions

- > NLL shower about to become the new standard, but not enough for the FCC!
 - \blacktriangleright benefits of LL \rightarrow NLL include reduced uncertainties (reliable estimate uncertainties)
 - For realistic applications we also need massive quarks (Deductor and Alaric already) include them), at least NLO matching, and tuning
- Higher log accuracy is one of the next frontiers
 - In double-soft (+ virtual) corrections: NNDL multiplicity and NSL non-global logarithms
- > Percent precision also requires these aspects not addressed here
 - ► NLO and NNLO Matching
 - > QED shower
 - Leading power corrections (e.g. in PDF's, Frixione&Webber 2309.15587)

