LLPs from Exotic Higgs Decays at FCC-ee

Axel Gallén, Giulia Ripellino, Magdalena Vande Voorde and Rebeca Gonzalez Suarez

7th FCC Physics Workshop - LAPP Annecy

2024-02-01

UPPSALA UNIVERSITET

What are LLPs?

- The SM particles has a wide range of lifetimes, the same is expected for new particles
- Long lifetime can be achieved by e.g small couplings ullet
- A long-lived particle (LLP) is defined as a new particle with sufficient decay length resolvable in the detector

Why search for LLPs?

LLPs are well-motivated in several BSM models!

- There are several open questions...
 - The matter anti-matter asymmetry
 - The origin of the electroweak symmetry breaking
 - Dark Matter, etc
- And many possible BSM models
 - Hidden Valleys
 - SUSY
 - Effective portal theories, etc.
- Conventional searches primarily designed for prompt decays, and searching for signatures of LLPs is technically challenging → new physics could have evaded detection until now
 - This motivates dedicated searches for LLPs at collider experiments, e.g see previous talks this week by <u>Nicolo Valle</u>, <u>Giacomo Polesello</u>, and <u>Juliette Alimena</u>

How to search for LLPs at colliders

- LLPs leave distinct signatures depending on their lifetime, mass, charge, and decay products
- Experimental **benefits**:
 - Little background from SM decays
 -but atypical backgrounds might be significant (e.g cosmic rays, instrumental effects)
- Experimental challenges:
 - main detectors, triggers, and offline reconstruction are <u>not</u> designed for displaced particles → room for improvement and to do something different at future accelerators!
- Apart from being a Higgs, Electroweak and Top-factory FCC-ee offers good opportunities for LLP searches:
 - Clean experimental signatures
 - No trigger limitations
 - High luminosity

Long-lived scalars from exotic Higgs decays

- The Higgs boson can have sizeable couplings to new particles \rightarrow exotic Higgs decays
- Our considered model: SM + scalar (<u>arXiv:1312.4992</u>, <u>arXiv:1412.0018</u>) •
- ullet

$$\mathcal{L}_{SM} \ni \underbrace{\frac{1}{2}\mu_S^2 S^2 - \frac{1}{4!}\lambda_s S^4}_{\text{scalar potential}} - \underbrace{\frac{1}{2}\kappa S^2 |H|^2}_{\text{portal term}} + \underbrace{\mu}_{\text{portal term}}$$

- The physical Higgs boson h and the scalar s mix with a **mixing angle sin** θ
- The scalar inherits its couplings to the SM particles from the Higgs

$$\Gamma(s \to X_{\rm SM} X_{\rm SM}) = \sin^2 \theta \ \Gamma(h(m_s) \to X_{\rm SM})$$

- For sufficiently small mixing, the scalar can be long-lived
 - $c\tau \sim meters if \theta < 1e-6 \rightarrow LLP signature$

• The new scalar could be a portal between the SM and a dark sector, motivated by e.g Dark Matter

New real scalar field S couples to the Higgs doublet H at renormalizable level, via the **Higgs-Scalar coupling k**

 $\iota^2 |H|^2 - \lambda |H|^4$

Higgs potential

 $X_{\rm SM}X_{\rm SM}$)

LLPs from exotic Higgs decays @ FCC-ee

- Targeting the *Zh* stage of FCC-ee and signal process: $e^+e^- \rightarrow Z h$ with $Z \rightarrow e^+e^-$ or $\mu^+\mu^-$ and $h \rightarrow ss \rightarrow b\bar{b}b\bar{b}$
- Experimental signature:

Simulation of long-lived scalars @ FCC-ee

- Full chain using MadGraph v3.4.1 + Pythia8 + Delphes, with the winter2023 IDEA Delphes card
 - Updated! The results in our note for the midterm report was obtained with the spring2021 card
- The scalars can be simulated with the <u>MadGraph5 HAHM model</u> (arXiv:1312.4992, arXiv:1412.0018) • It includes both a dark photon (that is decoupled) and a dark scalar

 - Set width of scalar to achieve long lifetime
- Link to <u>analysis code</u>
- Privately produced samples available here: /eos/experiment/fcc/ee/analyses_storage/BSM/LLPs/ExoticHiggsDecays/MC_generation

pical workflow Ł

simulation

Generated signals

- Generated process: $e^+e^- \rightarrow Zh$ with Z
- Parameter choices:
 - $m_s = 20 \text{ GeV}$ and $m_s = 60 \text{ GeV}$
 - $\sin \theta = 1e-5$, 1e-6, 1e-7, corresponding to mean proper lifetimes ст of O(1 mm – 10 m)
 - $\kappa = 7e-4$, s.t we have less than 1% addition to the Higgs width
 - Updated! The results in our note for the midterm report was obtained with $\kappa = 1e-3$

$$\rightarrow e^+e^- \text{ or } \mu^+\mu^- \text{ and } h \rightarrow ss \rightarrow b\bar{b}b\bar{b}$$

$$\Gamma_s = \sin^2 \theta \frac{3}{0.9 \times 8\pi} \frac{m_s m_b^2}{v_h^2} \Big(1 - \frac{4m_b^2}{m_s^2} \Big)$$
$$\theta \cdot \text{Mixing angle}$$

U. WIINING AUGIC

$$BR(h \to ss) = \frac{\kappa^2 v_h^2}{32\pi m_h \Gamma_h} \sqrt{1 - 4\frac{m_h^2}{m_h^2}}$$

 κ : Higgs-scalar coupling constant

Mass of Scalar	Mixing angle	Mean proper
$m_S \; [\text{GeV}]$	$\sin heta$	lifetime $c au$ [mm
20	1×10^{-5}	3.4
20	1×10^{-6}	341.7
20	1×10^{-7}	34167.0
60	1×10^{-5}	0.9
60	1×10^{-6}	87.7
60	1×10^{-7}	8769.1

$$e^-/\mu^-$$

$$- e^+/ \mu^+$$

Generated lifetime distribution

• Lifetime increases for smaller mixing angle, sin θ , and smaller masses, ms, as expected

Generator-level acceptance for scalar decays within the fiducial volume 4mm<r<2m

r	$\begin{array}{c} \text{Mixing angle} \\ \sin \theta \end{array}$	Mean proper lifetime $c\tau$ [mm]	Branching Ratio $BR(h \rightarrow ss)$	Total expected events	Expected
	$ \begin{array}{r} 1 \times 10^{-5} \\ 1 \times 10^{-6} \\ 1 \times 10^{-7} \\ 1 \times 10^{-5} \\ 1 \times 10^{-6} \\ 1 \times 10^{-7} \end{array} $	3.4 341.7 34167.0 0.9 87.7 8769.1	$\begin{array}{c} 6.98 \times 10^{-4} \\ 6.98 \times 10^{-4} \\ 6.98 \times 10^{-4} \\ 2.06 \times 10^{-4} \\ 2.06 \times 10^{-4} \\ 2.06 \times 10^{-4} \\ 2.06 \times 10^{-4} \end{array}$	55.20 55.20 55.20 16.32 16.32 16.32	50 53 2 0 16 10

DV reconstruction

- - reconstruction (cds)
- (arXiv:1506.08371), see more in backup

 - reconstruct the scalar DVs

 - Not applied to results shown today

Reconstructed decay length

- The distance between PV and DV nicely follows the generated decay length
- A good discriminating variable between signal and background!

FCCAnalyses: FCC-ee Simulation (Delphes)

Event selection

- Selecting events with a Z boson and at least 2 DVs
- DV selection:
 - Required to be in the tracker volume and outside the innermost region to exclude heavy-flavour decays
 - Large charged invariant mass to remove background DVs

	Selection	
Pre-selection Z boson tag Multiplicity of DVs	≥ 2 oppositely charged end $70 < m_{ll} < 11$ n_DVs \geq	lectrons or 0 GeV 2
Vertex Selection	$\begin{array}{c c} \operatorname{Min} r_{DV-PV} \\ \operatorname{Max} r_{DV-PV} \\ \operatorname{Min} M_{charged} \end{array}$	4 mm 2000 mr 1 GeV

FCCAnalyses: FCC-ee Simulation (Delphes)

WIP: Background studies

- Previous study with the spring2021 centrally produced samples was statistically limited
- The winter2023 samples offer more statistics and exclusive decays
- Currently working with a refined background study
 - The full chain is in place to study the background samples!

Axel Gallén

Sensitivity analysis of the signal

Sensitivity for all signal samples except the shortest and longest lifetime!

- lacksquareexcluded to CL 95%
- Signals:

$m_s, \sin heta$	$c au~[{ m mm}]$	$BR(h \rightarrow ss)$	Before selection	Pre-selection	$70 < m_{ll} < 110~{\rm GeV}$	$n_DVs \geq 2$
20 GeV, 1e-5 20 GeV, 1e-6 20 GeV, 1e-7 60 GeV, 1e-5 60 GeV, 1e-6	3.4 341.7 34167.0 0.9 87.7	6.98×10^{-4} 6.98×10^{-4} 6.98×10^{-4} 2.06×10^{-4} 2.06×10^{-4}	$55.2 \pm 0.552 \ 55.2 \pm 0.552 \ 55.2 \pm 0.552 \ 16.32 \pm 0.163 \ 16.32 \pm 0.163$	52.84 ± 0.538 52.44 ± 0.538 52.38 ± 0.540 15.62 ± 0.127 15.62 ± 0.196	49.02 ± 0.520 49.02 ± 0.521 49.68 ± 0.524 14.59 ± 0.154 14.61 ± 0.196	5.0 ± 0.166 37.1 ± 0.453 0.8 ± 0.067 0.0033 ± 0.002 10.96 ± 0.167
$60 \mathrm{GeV}, 1e-7$	8769.1	2.06×10^{-4}	16.32 ± 0.163	15.52 ± 0.159	14.62 ± 0.155	6.49 ± 0.103

 \bullet events and uncertainties are only statistical

Given zero background, signal points with at least 3 expected events can be

Applied event selections from left to right, results given in number of expected

Summary

- done and is ongoing!

 - 1 mm 10 m
 - Event selection: tagging the Z boson and requiring at least 2 DVs

 - Ongoing work with the winter2023 IDEA card and samples towards a paper
- Next steps:
 - Move to full simulation when available
 - Improve DV reconstruction
 - Study other LLP signatures such as delayed jets

A simulation and analysis of LLPs from exotic Higgs decays at FCC-ee has been

• Looking at the signal: $e^+e^- \rightarrow Zh$ with $Z \rightarrow e^+e^-$ or $\mu^+\mu^-$ and $h \rightarrow ss \rightarrow bbbb$

• For signal points with ms = 20 GeV and ms = 60 GeV and mean proper lifetimes of order

• Potential sensitivity for all signal samples except the shortest and longest lifetime sample!

Thank you for your attention!

Backup slides

Sensitivity at gen level - previous results

- Previous results with spring2021 card, and using the cross section
- Selected events that has ≥ 1 scalar within the acceptance region 4 mm < r < 2000 mm
 - All signal samples has \geq 4 events except the shortest and longest lifetime!

Mass of Scalar	Mixing angle	Mean proper	Cross Section	Branching Ratio	Expected events	Expected selected
$m_S \; [\text{GeV}]$	$\sin heta$	lifetime $c\tau$ [mm]	σ [pb]	$BR(h \rightarrow ss)$	at 5 ab^{-1}	events
20	1×10^{-5}	3.4	8.858×10^{-6}	6.27×10^{-4}	44.29	40.03
20	1×10^{-6}	341.7	8.858×10^{-6}	$6.27 imes10^{-4}$	44.29	43.31
20	1×10^{-7}	34167.0	8.858×10^{-6}	$6.27 imes10^{-4}$	44.29	1.57
60	1×10^{-5}	0.9	2.618×10^{-6}	$1.85 imes 10^{-4}$	13.09	0.01
60	1×10^{-6}	87.7	2.618×10^{-6}	1.85×10^{-4}	13.09	12.98
60	1×10^{-7}	8769.1	2.618×10^{-6}	$1.85 imes 10^{-4}$	13.09	8.62

Number of expected events given by $N = L \times \sigma$ with $L = 5 ab^{-1}$ and $\sigma = \sigma_{ZH} \times BR(h \to ss) \times BR(s \to b\bar{b})^2 \times BR(Z \to l^+l^-)$

Sensitivity analysis - previous results

- Previous results presented in the note using the spring2021 card
- ullet
- Backgrounds: lacksquare

	Before selection	Pre-selection	$70 < m_{ll} < 110 \; { m GeV}$	$n_{DVs} \ge 2$
WW	$8.22\mathrm{e}{+07}\pm7.45\mathrm{e}{+06}$	$2.11\mathrm{e}{+06}\pm4.16\mathrm{e}{+04}$	$4.68\mathrm{e}{+05} \pm 1.96\mathrm{e}{+04}$	$0~(\leq 1.96e+04)$
ZZ	$6.79\mathrm{e}{+06} \pm 1.77\mathrm{e}{+05}$	$8.91\mathrm{e}{+05}\pm7.78\mathrm{e}{+03}$	$5.85\mathrm{e}{+05}\pm6.31\mathrm{e}{+03}$	$0~(\leq 6.31\mathrm{e}{+03})$
ZH	$1.01\mathrm{e}{+06} \pm 1.01\mathrm{e}{+04}$	$5.97\mathrm{e}{+}04 \pm 7.76\mathrm{e}{+}02$	$4.75\mathrm{e}{+04}\pm 6.93\mathrm{e}{+02}$	$0~(\leq 6.93e{+}02)$

• Signals:

$m_s, \sin \theta$	Before selection	Pre-selection	$70 < m_{ll} < 110 \; { m GeV}$	$n_{DVs} \ge 2$
20 GeV, 1e-5	44.3 ± 0.0295	29.8 ± 0.363	28.9 ± 0.358	3.55 ± 0.125
20 GeV, 1e-6	44.3 ± 0.0295	30.4 ± 0.367	29.7 ± 0.363	22.4 ± 0.315
20 GeV, 1e-7	44.3 ± 0.0295	36.3 ± 0.401	35.6 ± 0.397	0.531 ± 0.0485
60 GeV, 1e-5	13.1 ± 0.00474	8.38 ± 0.105	8.12 ± 0.103	$0 \ (\leq 0.103)$
60 GeV, 1e-6	13.1 ± 0.00474	8.34 ± 0.104	8.09 ± 0.103	6.43 ± 0.0917
60 GeV, 1e-7	13.1 ± 0.00474	9.69 ± 0.113	9.45 ± 0.111	4.10 ± 0.0732

uncertainties are only statistical

Given zero background, signal points with at least 3 expected events can be excluded to CL 95%

• Applied event selections from left to right, results given in number of expected events and

Summary of current constraints from LHC

Review: Exotic Higgs Decays arXiv:2111.12751

- Figure summarizes searches at ATLAS, CMS and LHCb for h → ss where s is a new long-lived scalar in the mass range 30-40 GeV
 - In order to compare the results the figure shows the results for $(\sigma h/\sigma hSM)$ × Br $(h \rightarrow ss)$ using the approximated branching ratios Br $(s \rightarrow bb) = 85\%$, Br $(s \rightarrow cc) = 5\%$ and Br $(s \rightarrow \tau \tau) = 8\%$ for results with exclusive final states

Previous studies: exotic Higgs decays FCC-ee sensitivity

Long Live the Higgs Factory: Higgs Decays to Long-Lived Particles at Future Lepton Colliders arXiv: 1812.05588

Invariant mass cut to retain Cuts optimised for longer sensitivity to shorter decay lengths decay lengths

Plot from: <u>arXiv:2203.05502</u>

Results from: arXiv:1812.05588

- Projected 95% h → XX branching ratio limits as a function of proper decay length for a variety of X masses.
- The solid line corresponds to the 'large mass' analysis, using an invariant mass cut to retain sensitivity to shorter decay lengths.
- The dashed line corresponds to the 'long lifetime' analysis and depends on longer decay lengths to reduce SM backgrounds
- Realistic tracker-based search strategy involving the reconstruction of displaced secondary vertices and the imposition of selection cuts appropriate for eliminating the largest irreducible SM backgrounds.

Efficiencies - previous result from note

	20 GeV, 1e-5	20 GeV, 1e-6	20 GeV, 1e-7
Before selection	1.0	1.0	1.0
Pre-selection	0.672	0.687	0.819
$70 < m_{ll} < 110 \; { m GeV}$	0.653	0.670	0.803
$n_{DVs} \ge 2$	0.080	0.505	0.012
	60 GeV, 1e-5	60 GeV, 1e-6	60 GeV, 1e-7
Before selection	1.0	1.0	1.0
Pre-selection	0.640	0.637	0.740
$70 < m_{ll} < 110 \; { m GeV}$	0.620	0.618	0.722
$n_{DVs} \ge 2$	0.0	0.491	0.313

	WW	ZZ	
Before selection	1.0	1.0	
Pre-selection	0.131	0.026	6
$\mid 70 < m_{ll} < 110 \; { m GeV} \mid$	0.006	0.086	
$ n_DVs \ge 2$	0.0	0.0	

Mass of Scalar	Mixing angle	Mean proper
$m_S \; [{ m GeV}]$	$\sin heta$	lifetime $c\tau$ [mr
20	1×10^{-5}	3.4
20	1×10^{-6}	341.7
20	1×10^{-7}	34167.0
60	$1 imes 10^{-5}$	0.9
60	1×10^{-6}	87.7
60	1×10^{-7}	8769.1

ZH 1.0 0.059 0.047 0.0

Model parameters and calculations

• Width of scalar and branching ratios for s from arXiv:1312.4992

$$\Gamma_s = \frac{\Gamma(s \to b\bar{b})}{BR(s \to b\bar{b})} = \sin^2\theta \frac{N_c m_s m_b^2}{0.9 \times 8\pi v^2} \left(1 - \frac{m_b^2}{m_s^2}\right)^{3/2}$$

• Approximate the number of events with

 $N = N_{ZH} \times BR(h \to ss) \times BR(s \to b\bar{b})^2 \times BR(Z \to l^+l^-)$

• The branching ratio for Higgs to s (arXiv:2111.12751)

$$BR(h \to ss) = \frac{\kappa^2 v^2}{32\pi m_h \Gamma_h} \sqrt{1 - 4\frac{m_s^2}{m_h^2}}$$

• We set $\kappa = 1e-3$ s.t $BR(h \rightarrow ss) = O(10^{-4})$, lower than current constraints and within reach for FCC-ee shown by previous studies, see backup

•
$$BR(s \rightarrow b\bar{b})^2 = 0.9^2$$
, from plot

• $N_{ZH} = \dots \pm \dots$, from midterm report Fill in

Vertex reconstruction

- More details in thesis: DiVA
- LCFIPlus: A Framework for Jet Analysis in Linear Collider Studies: arXiv:1506.08371
- FCCAnalyses framework vertex reconstruction: <u>GitHub</u>

Invariant mass at the DVs

FCCAnalyses: FCC-ee Simulation (Delphes)

- Previous result from note
- Usually a good discriminating variable between a DV from an LLP and a fake vertex lacksquare
- \bullet jet fragmentation \rightarrow expected peak around half of the particle's mass
- More of a structure around higher masses for the merged vertices lacksquare

FCCAnalyses: FCC-ee Simulation (Delphes)

Invariant mass at vertex calculated assuming all tracks to come from pions, this only captures the charged component of the

