New physics in the forward kinematic region of the FCC

Sebastian Trojanowski National Centre for Nuclear Research, Poland

7th FCC Physics Workshop

Laboratoire d'Annecy de physique des particules

January 1, 2024

FAR-FORWARD SEARCHES AT THE LHC

- Forward direction: lots of activity down the beam pipe
- Far-forward detectors:
 - well-screened from pp collisions
 - only neutrinos and muons survive
- Current Run 3: FASER, SND@LHC
- HL-LHC: proposed Forward Physics Facility (FPF)

J.L. Feng etal, 2203.05090 L.A. Anchordoqui etal, 2109.10905

- Physics:
 - "Precision" high-energy neutrino physics
 - Implications for QCD & cosmic-ray physics
 - New physics searches

BSM FAR-FORWARD SEARCHES AT THE LHC

FORWARD PHYSICS FACILITY @ FCC

FORWARD NEUTRINOS @ FCC

• Large forward flux of high-energy (up to few tens of TeV) neutrinos of all 3 flavors

- Up to order $10^9 \nu_{\mu}$ and ν_e interactions, and few x 10^6 for ν_{τ} (~100 ton detector; cf. DUNE 70kt mass)
- Collimated flux:
 - baseline: 40cm x 40cm transverse size
 - allows for detailed event studies
- No (SM) oscillations (~near detector)
- BSM opportunities
- Rich SM physics program
 Juan Rojo talk on Thursday

F. Kling, L.J. Nevay, 2105.08270

FORWARD LONG-LIVED PARTICLES

• Rare meson decays can also produce BSM particles

• Long-lived species can decay inside FPF@FCC detectors

PortalCouplingDark Photon, A_{μ} $-\frac{\epsilon}{2\cos\theta_W}F'_{\mu\nu}B^{\mu\nu}$ Dark Higgs, S $(\mu S + \lambda S^2)H^{\dagger}H$ Axion, a $\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}, \frac{a}{f_a}G_{i,\mu\nu}\tilde{G}^{\mu\nu}_i, \frac{\partial_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^5\psi$ Sterile Neutrino, N y_NLHN

EXAMPLE: DARK HIGGS BOSON

Dark Higgs, $S = (\mu S + \lambda S^2) H^{\dagger} H$

New scalar mixing with the SM Higgs; inherits also couplings to SM fermions

$$\mathcal{L} = -m_{\phi}^2 \phi^2 - \sin heta rac{m_f}{v} \phi ar{f} f - \lambda v h \phi \phi$$

ullet Production: heavy meson decays ($B
ightarrow X_s \phi$), SM Higgs decay h $ightarrow \phi \phi$ @ FCC

F. Kling, ST (FORESEE), 2105.07077

complimentarity: central detectors (displaced verțices)

- Decay: mostly bb, $\tau^{+}\tau^{-}$, ... final states
- Large lifetime: TeV-energy m_{ϕ} = 10 GeV, $\theta \sim 10^{-7} \rightarrow \tau_{\phi} \sim 100 \text{ km}$

F. Kling, ST (FORESEE), 2105.07077

EXAMPLE: DARK HIGGS BOSON & COSMOLOGY

Dark Higgs, $S = (\mu S + \lambda S^2) H^{\dagger} H$

• New scalar mixing with the SM Higgs; inherits also couplings to SM fermions

$$\mathcal{L} = -m_{\phi}^2 \phi^2 - \sin heta rac{m_f}{v} \phi ar{f} f - \lambda v h \phi \phi$$

ullet Production: heavy meson decays ($B
ightarrow X_s \phi$), SM Higgs decay h $ightarrow \phi \phi$ @ FCC

- Decay: mostly bb, $\tau^+\tau^-$, ... final states
- Large lifetime: TeV-energy m_{ϕ} = 10 GeV, $\theta \sim 10^{-7} \rightarrow \tau_{\phi} \sim 100 \text{ km}$

 $\mathcal{L} \supset -(1/2) \, \kappa \, \phi \, \bar{\chi} \chi$

- relic density, $\chi \chi \rightarrow \phi \phi$ (driven by κ)
- indirect search for the dark Higgs mediator goes significantly below the ν floor

complimentarity:

DM direct detection

EXAMPLE: RELAXION-TYPE MODEL

• Relaxion solution to the hierarchy problem: stabilizing the Higgs mass dynamically

P.W. Graham, D.E. Kaplan, S. Rajendran, 1504.07551

- Relaxion phenomenology resembles dark Higgs boson with m_{ϕ} and $\sin\theta$...
- ... but the $h\phi\phi$ coupling is not a free parameter and becomes non-zero in the low- θ regime

- BR(h $\rightarrow \phi \phi$) becomes suppressed for low m_{ϕ}
- Sensitivity gap between beam-dump and B-meson factories⁻² & invisible Higgs decay search
- Requires detecting ϕ decays
- Complimenatarity between the central and forward detectors to bridge the gap

EXAMPLE: MILLICHARGED PARTICLES

- Possible result of new unbroken gauge symmetries
- Massless dark vector boson kinetically mixing with the hypercharge boson
- Massless dark photons additionally coupled to dark fermions χ ...

$$\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{1}{4} B'_{\mu\nu} B'^{\mu\nu} - \frac{\varepsilon}{2} B'_{\mu\nu} B^{\mu\nu} + i\bar{\chi}(\partial \!\!\!/ + ie' B' + iM_{\rm MCP})\chi$$

- \bullet ...they acquire millicharge, Q_{χ} ~= ϵe
- $\bullet~\chi$ could be (a subdominant) DM contribution
- χ production @ FCC: hadron decays, Drell-Yan, ...
- χ detection via ionization (a-la-milliQan, FORMOSA@FPF) S. Foroughi-Abari etal, 2010.07941
- Complimentary DM direct detection searches
 & cosmological probes

CONCLUSIONS

- Forward BSM & neutrino physics program at the LHC (running: FASER, SND@LHC)
- Proposed extension for HL-LHC: Forward Physics Facility (FPF) J.L. Feng etal, 2203.05090 L.A. Anchordogui etal, 2109.10905
- FPF@FCC out-of-the-box studies but updated for higher energies
- Predictions: high-energy neutrinos up to tens of TeV and billions of interactions
- Can be used to search for new physics (collimated flux)
- Long-lived particles with masses up to tens or hundreds of GeV can be probed (examples: dark Higgs, mCPs)

• **Convenient simulation tool FORESEE** (initial forward BSM studies for FCC-hh, HE-LHC, SppC)

F. Kling, ST (FORESEE), 2105.07077

