(Update on) Higgs self-coupling determination at the FCC-hh

Angela Taliercio, Birgit Stapf

Elisabetta Gallo, Kerstin Tackmann, Paola Mastrapasqua, Michele Selvaggi, Christophe Grojean

01.02.2024 | 7th FCC Physics Workshop | Annecy

Higgs self-coupling @ FCC-hh: What & why?

CLUSTER OF EXCELLENCE

OUANTUM UNIVERSE

- Measuring the Higgs self-coupling allows us to gain insight into the nature of the Higgs potential and electroweak symmetry breaking
- FCC-hh: pp-collisions at 100 TeV, 30 ab⁻¹ in ~25 years
- Measuring the Higgs self-coupling via di-Higgs production is key benchmark for FCC-hh
 - SM: $\sigma(ggHH) \sim O(1000)$ smaller than $\sigma(ggH)$
 - Large cross-section and data-set at FCC-hh
 - 20 x precision of HL-LHC

Page 2

Overview of Higgs self-coupling limits & prospects

- At LHC we set limits: $-0.4 < \kappa_{\lambda} < 6.3$ (<u>ATLAS-HDBS-2022-03</u>)
- Only at future colliders we will reach a precision measurement

δκλ (68% CL)

Di-Higgs final states

<u>HH measurements</u>:

- Very low cross section
- Challenging final state
- Trade off between purity and high branching ratio

Higgs self-coupling projections for FCC-hh

	Combined precision
$oldsymbol{\delta\kappa}_{\lambda}$ (68% CL)	3.4% - 7.8%

- Previously published prospect studies combined *bbyy*, *bbrr*(*hh*+*lh*), *4b* and *bbZZ*(*4l*) final states
- Considered three different scenarios for detector performance and systematic uncertainties by reweighting from main, detector scenario based on LHC performance & FCC-hh CDR

Our work: Update of $\overline{b}byy$ and adding $\overline{b}bll + E_T^{miss}$

• Studying only ggF HH	Final state	BR(HH→X)	Description
production mode (so far) bb 33.6% Assuming SM Higgs BR BR HH \rightarrow XXyy ww 24.8% $(m_{H} = 125 \text{ GeV})$ arXiv:1708.08249 gg	Бbуу	0.26%	 Rare, but high precision DNN-based analysis What is the ultimate precision that can be reached?
$\tau\tau$ 7.3% ZZ 3.1% YY 0.26% 0.1% rarer bb WW 99 $\tau\tau$ ZZ YY rarer	bbll+E ^{miss}	3.24%	 Summing contributions from <i>bbWW(lvlv)+bbrr(llvlv)+bbZZ(llvv)</i> Larger BR, but more background contaminated, limited precision Cut-based analysis New for FCC-hh

All part of <u>key4hep</u> project: Consistent software stack for all future projects

- Fast, parametrized simulation in Delphes
- Using <u>EventProducer</u> framework (fork)
- Samples in <u>EDM4HEP</u> format

- Our analyses employ two detector scenarios
 - Both implement fixes w.r.t the original
 FCC-hh Delphes card, e.g.
 bremsstrahlung for electrons, multiple
 scattering, resolutions in forward region

 10^{3}

Iniversität Hamburg

 p_T (GeV)

 10^{1}

CLUSTER OF EXCELLENCE

OUANTUM UNIVERSE

 p_T (GeV)

- Our analyses employ two detector scenarios
 - **Scenario I**: Optimistic case Ο
 - LHC run 2 conditions with e.g. ideal crystal calorimeter, b-tagging (slightly) better than current CMS \rightarrow This is the scenario to use for

ultimate precision in *bbyy*

- Our analyses employ two detector scenarios
 - <u>Scenario I</u>: Optimistic case
 - **Scenario II:** Baseline, more realistic
 - I.e. baseline LaR calorimeter from

CDR, lower efficiencies, ...

 \rightarrow Use for new channel $\overline{bbll} + E_T^{miss}$

Relevant objects

	Relative p	Relative p resolution		iency
	Scen I	Scen II	Scen I	Scen II
Electrons	0.4-1%	0.8-3%	76-95%	72-90%
Muons	0.5-3%	1-6%	90-99%	88-97%
Mec	Medium b-tagging		80-90%	76-86%

All part of <u>key4hep</u> project: Consistent software stack for all future projects

- Fast, parametrized simulation in Delphes
- Using <u>EventProducer</u> framework (fork)
- Samples in <u>EDM4HEP</u> format

Analysis with common framework FCCAnalyses

- Currently on fork with some new additions
 - E.g. getting tagged jets from Delphes
- Plan to integrate into main repo

$\overline{b}bll + E_T^{miss}$ analysis

$\overline{bbll} + E_T^{miss}$: Analysis strategy

*e*μ**-category**

🛱 Universität Hamburg

- Signal signature: Lepton pair + E_T^{Miss} + 2 b-jets
 - Leptons isolated from b-jets ($\Delta R > 0.4$)
- Backgrounds from:
 - \overline{tt} and single top
 - $\overline{tt}V$
 - Single Higgs $(ggF, VBF, \overline{tt}H, VH)$
 - V+jets
 - <u>ttVV</u>
- Categorization of events based on lepton flavours and whether (on-shell) Z(ll) decay is present

$\overline{b}bll + E_T^{miss}$: Event kinematics & selection

Universität Hamburg

DER EDRECHTING I DER TEMPE I DER DITOTT

$\overline{b}bll + E_T^{miss}$: Event kinematics & selection

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Universität Hamburg

- <u>Stransverse mass</u> m_{T2} predicts invisible mass contribution
 - Capture the full *HH* decay

Page 18

Results: Systematic uncertainties

Source of uncertainty	Syst. 1	Syst. 2	Syst. 3	Applies to	Correlated
Common systematics					
b-jet ID / b-jet	0.5%	1%	2%	Signals, MC bkgs.	1
Luminosity	0.5%	1%	2%	Signals, MC bkgs.	1
Signal cross-section	0.5%	1%	1.5%	Signals, MC bkgs.	1
$b\bar{b}\gamma\gamma$ systematics					
γ ID / γ	0.5%	1%	2%	Signals, MC bkgs.	×
$b\bar{b}\ell\ell + E_{\rm T}^{\rm miss}$ systematics					
Lepton ID / lepton	0.5%	1%	2%	Signals, MC bkgs.	×
Data-driven bkg. est.	-	1%	1%	V + jets	×
Data-driven bkg. est.	-	-	1%	$t \overline{t}$	×

- Following previous di-Higgs studies@FCC-hh
- Applied as rate systematics only, no shape effect

$\overline{bbll} + E_T^{miss}$: Results

- Higgs self-coupling modifier κ_{λ} interpretation
 - Parametrized dependence of σ (ggHH) on κ_{λ}
 - Inputs: $\kappa_{\lambda} = 1.0, 2.4, 3.0$
 - \circ $\;$ All other couplings fixed to SM $\;$
 - NLO cross-sections at 100 TeV, with *k*-factor independent of κ_{λ}
 - No Higgs BR dependance on κ_{λ} and uncertainties or other additional theory uncertainties
- Preliminary results for scenario II $\overline{bbll}+E_T^{miss}$
 - Neglecting V+jets and single top backgrounds

bbyy analysis

bbyy analysis: Introduction

M. Mangano, G. Ortona, M. Selvaggi

The *byy* channel is the most sensitive one and it was already studied by previous paper achieving at best 3.8% (3.4% stat only) precision on the self coupling

bbyy analysis: Introduction

🙁 Universität Hamburg

byy analysis: Introduction

Is this the ultimate precision that we can reach on the self coupling? Can we improve this result? If yes how?

- New detector simulation
 - First time that we simulate an 'ideal' detector, in the previous studies it was reweighted from the main FCC-hh scenario

byy analysis: Introduction

Is this the ultimate precision that we can reach on the self coupling? Can we improve this result? If yes how?

- New detector simulation
- New analysis strategy
 - We tried 2 main analysis strategy and compared the results

byy analysis: Introduction

Is this the ultimate precision that we can reach on the self coupling? Can we improve this result? If yes how?

- New detector simulation
- New analysis strategy
- Check which is the most sensitivity observable and try to improve it
 - Different assumptions on $m_{\overline{hb}}$ resolution

3DNNs as for the baseline analysis:

• 'ttH-killer' trained signal vs ttH background (93% AUC)

- *t*t*H* enhanced same final state as signal signature
 - $\sigma(\bar{t}\bar{t}H\rightarrow\gamma\gamma)\sim 3 \sigma(ggHH\rightarrow bb\gamma\gamma)$

- Exploit expected differences in kinematics:
 - $\overline{tt}H$ more jets, but less energetic
 - $\overline{tt}H$ can contain high pT leptons

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Universität Hamburg

3DNNs as for the baseline analysis:

- 'ttH-killer' trained signal vs ttH background (93% AUC)
- 'High Mx region DNN' trained signal vs all background but ttH (82% AUC)
- 'Low Mx region DNN' trained signal vs all background but ttH (74% AUC)

- Separate DNNs for suppressing non- background, using same input variables as $\overline{tt}H$ tagger
- Optimization of cuts based on significance

3DNNs as for the baseline analysis:

- 'ttH-killer' trained signal vs ttH background (93% AUC)
- 'High Mx region DNN' trained signal vs all background but ttH (82% AUC)
- 'Low Mx region DNN' trained signal vs all background but ttH (74% AUC)

 m_{bb} splitting:

- 1 $m_{\overline{bb}}$ bin (m_{\overline{bb}} distribution not used)
- $2 m_{\overline{bb}}$ bins (sideband + central region)
- optimal mbb binning ($m_{\overline{bb}}$ in bins that are determined by the significance)

$\overline{b}byy$ analysis: Strategy 1 (Run2 like analysis 2 m_b bins)

byy analysis: Strategy 2

1DNN with all the backgrounds in (87% AUC)

 $\circ~$ AUC is compatible with the mean of the AUCs used in strategy 1 $\rightarrow~$ the sensitivity at the end should be the same

 m_{bb} splitting:

- 1 $m_{\overline{bb}}$ bin (m_{bb} distribution not used)
- $2 m_{\overline{bb}}$ bins (sideband + central region)
- optimal mbb binning ($m_{\overline{bb}}$ in bins that are determined by the significance)

bbyy analysis: Strategy 2 overview (2 m_{*bb*} bins splitting)

bbyy analysis: Strategies comparison and results

Strategy 1 and strategy 2 gave the same results:

• Improve the DNN splitting doesn't really optimize the analysis

Does the $m_{\overline{bb}}$ splitting optimize the sensitivity?

bbyy analysis: Strategies comparison and results

Strategy 1 and strategy 2 gave the same results:

• Improve the DNN splitting doesn't really optimize the analysis

Does the m_{bb} splitting optimize the sensitivity?

bbyy analysis: Strategies comparison and results

Does the $m_{\overline{bb}}$ splitting optimize the sensitivity?

Why the solution with 2 m_{bb} binning or a m_{bb} optimize binning lead to the same precision on κ_{λ} ?

It's time to investigate properly the $m_{\overline{bb}}$ distribution

byy analysis: the road to 1% precision on self coupling

We assume a gaussian resolution of 10 GeV for the $m_{\overline{bb}}$ of the signal

	m _{<i>bb</i>} optBin Old result	
Stat only	2.5%	3.4%
Syst I	2.7%	3.8%

1.5x improvement versus the older results

Seems that the resolution on $m_{\overline{bb}}$ is the key to achieve better precision on k_{λ}

byy analysis: the road to 1% precision on self coupling

What happens if we assume better resolution for the $m_{\overline{bb}}$ mass?

	Stat only	Syst 1	Already better
No assumption on $m_{\overline{bb}}$ resolution	3.2%	3.6%	that what quoted in the documentation
10 GeV <i>m_{bb}</i> res	2.5%	2.7%	(3.8% Syst 1)

byy analysis: the road to 1% precision on self coupling

What happens if we assume better resolution for the $m_{\overline{bb}}$ mass?

	Stat only	Syst 1	Already better
No assumption on m_{bb} resolution	3.2%	3.6%	that what quoted in the documentation
10 GeV m_{bb} res	2.5%	2.7%	(3.8% syst 1)
5 GeV m _{bb} res	2.0%	2.3%	-
3 GeV m _{bb} res	1.8%	2.0%	

Conclusion

We restarted the effort of FCC-hh Higgs self-coupling studies:

• Common software tools, working on integration of our developments into the main repositories

 $bbll + E_T^{miss}$

- Cut-based analysis showing first estimates of precision 20-40% stand-alone
- Finalizing the analysis with realistic detector scenario II
- Potential further optimization/studies: Improve lepton isolation efficiencies, impact of higher levels of pile-up, MVA ...

Conclusion

We restarted the effort of FCC-hh Higgs self-coupling studies:

• Common software tools, working on integration of our developments into the main repositories

Бbуу

- We studied several analysis configuration to test the stability of our results and the precision to which we are able to measure the self coupling
 - Not much difference in applying 3 or 1 DNN, but very sensitive to the m_{bb} resolution/splitting
- Reaching ~1% precision on κ_{λ} seems possible only if we are able to build a detector that can have a m_{bb} resolution of 3GeV
- We are happy to study different center of mass energy scenarios:
 - \circ $$ 80 TeV and 120 TeV

Overview of Higgs self-coupling limits & prospects

Experiment	95% CL limit	Reference	Best case sce	enarios for Future	e Colliders	
ATLAS - HH	$-0.6 < \kappa_1 < 6.6$	ATLAS-HDBS-2022	Experiment	$oldsymbol{\delta}\kappa_{\lambda}^{}$ (68% CL)	Reference	
- H+HH	$-0.4 < \kappa_{\lambda}^{^{\lambda}} < 6.3$		ILC (1 TeV)	10%	<u>arXiv:2203.07622</u> <u>v2</u>	1
CMS	1247465	<u>Nature 607 (2022)</u> <u>60</u>	CLIC (3 TeV)	9%	<u>arXiv:1812.01644</u> <u>v1</u>	
- пп	$\frac{-1.2 < \kappa_{\lambda} < 0.3}{\delta \kappa}$		FCC-ee	24%	<u>JHEP01(2020)139</u>	} H only
HL-LHC	~50%	e.g.	μ (10 TeV)	~3.5%	<u>arXiv:2203.07261</u> <u>v2</u>	
		<u>22-005</u>	FCC-hh	3.4%	<u>arXiv:2004.0</u> 3505v2	

Results: Self-coupling precision

1 DNN performance

3 DNNs performances: ttH killer

3 DNNs performances: Mx > 350

3 DNNs performances: Mx < 350

bbyy analysis: DNN input variables

- The number of jets (with no b tag requirement)
- The b tag of the leading and subleading jet;
- $p_T(j)/m(jj)$ of the leading and subleading jet.
- $p_T(jj)/m(jj)$ of the dijet object;
- $p_T(\gamma)/m(\gamma\gamma)$ of the leading and subleading photon;
- $p_T(\gamma\gamma)/m(\gamma\gamma)$ of the diphoton object;
- The scalar sum of the jet p_T ;
- The ΔR between the closest photon-jet pair;
- The ΔR between the other photon-jet pair;
- **The** $\Delta \phi$ and $\Delta \eta$ between the leading and subleading photon;
- The $\Delta \phi$ and $\Delta \eta$ between the leading and subleading jet;
- The $\Delta \phi$ and $\Delta \eta$ between the diphoton and the dijet object,
- The angle between the diphoton object and the beam axis in the dijet rest frame;
- The angle between the leading jet and the beam axis in the dijet rest frame;
- The angle between the leading photon and the beam axis in the diphoton rest frame;
- Number of leptons, i.e. muons and electrons
- p_T of muons and electrons

1.0

0.8

Signal kl=1.0

ttH

3.0 3.5 4.0

Signal kl=1.0

Signal kl=1.0 ttH

ggJets

res bkg

ttH

aqlets

res bkg

gglets

res bkg

CLUSTER OF EXCELLENCE

Delphes parametrization update: m_{yy} resolution

Reco level resolution obtained using $HH \rightarrow \overline{b}byy$ sample

 More aggressive resolution for *m_{yy}* compared to the baseline scenario

Delphes parametrization update: b-tagging

💾 Universität Hamburg

QUANTUM UNIVERSE

Checks were performed using 600k of $HH \rightarrow \overline{b}b\tau\tau$ events

$\overline{bbll} + E_T^{miss}$: Mass resolution comparisons old and new Delphes card

$\overline{bbll} + E_T^{miss}$: Event selection & categorization

		Analysis category	
	DFOS	SFOS, no Z -peak	SFOS, on Z -peak
Main signals	$b\bar{b}WW^*,b\bar{b} au au$	$b\bar{b}WW^*,b\bar{b} au au$	$bar{b}ZZ^*,bar{b} au au$
Selection variable		Criterion	
Lepton pair	$e\mu$	$ee ext{ or } \mu\mu$	$ee ext{ or } \mu\mu$
Number of b-jets		≥ 2	
m_{bb}		85 - $105~{\rm GeV}$	
ΔR_{bb}		< 2	
$\Delta R_{\ell\ell}$		< 1.8	
$H_{\mathrm{T2}}^{\mathrm{ratio}}$		> 0.8	
$m_{lb}^{ m reco}$		$> 150 { m ~GeV}$	
$\Delta \phi(\ell \ell, E_T^{ ext{miss}})$		< 2	< 1.2
$m_{\ell\ell}$	10 -	- 80 GeV	81 - $101~{\rm GeV}$
$\Delta \phi(\ell \ell, E_T^{\text{miss}})$ -categories	< 1.2 ("low") at	nd $1.2 - 2.0$ ("high")	-

Table 3.25.: Overview of the harmonized event selection and categorization.

Previous projections for *bbWW* @ FCC-hh

- *bbWW(2jlv)* studied using BDT, with similar input variables as used here
- Achieved 40% precision (@68% CL) on κ

Di-Higgs cross-section dependance on κ_{λ} in *pp*-collisions

Higgs self-coupling @ ILC

- Two production modes:
 - Higgsstrahlung, peaks ~500 GeV
 - WW-fusion, above ~1 TeV
 - \rightarrow need runs at both energies for maximum κ_{λ} precision

- Studied dominant channels 4b and bbWW
- Advantage of *ee*-collider: *ZHH* cross-section increases with κ_{λ} , hence better constraints at values $\kappa_{\lambda} > 1$ than *pp*-colliders

Higgs self-coupling @ muon collider

• Only *4b*

	3 TeV μ -coll.	10 TeV μ -coll.	14 TeV μ -coll.	30 TeV μ -coll.
	$L \approx 1$ ab	L=10 ab	$L\approx 20 \text{ ab}^{-1}$	$L=90 ab^{-1}$
	in the second	68% prob. inte	erval	
δκλ	[-0.27,0.35] U [0.85,0.94]	[-0.035, 0.037]	[-0.024, 0.025]	[-0.011, 0.012]
	\rightarrow [-0.15,0.16] (2× L)			

3.0

Why di-Higgs at FCC-hh?

FCC-hh is the only perspective for a Higgs self-coupling precision measurement \longleftrightarrow

Higgs self-coupling measurement is a clear benchmark channel for the FCC-hh

