Determination of one angle of the "squashed" (d,s) unitarity triangle at FCC-ee

R. Aleksan (CEA/IRFU), L. Oliver (IJCLab), E.Perez (CERN)

7th FCC Physics Workshop, Jan 29 – Feb 2, 2024, Annecy

Analysis and write-up advanced, plan to submit soon to arXiv

Unitarity triangles

Six triangular relations from unitarity of V_{CKM} . Among them :

The "(b, s) triangle": <u>2107.02002</u>, <u>2107.05311</u> (SM: Relations between the angles of these triangles)

FCC-ee : direct measurements of the 'non usual' triangles. Important consistency checks of the CKM mechanism of the SM. Here: Study expected precision on α_{ds}

31.01.24

Both B and B_s decays give access to α_{ds} via time-dependent CPV asym. Must measure both and check that $\Phi_{CKM}(B_s) + \Phi_{CKM}(B_d) = 2\pi$: important consistency check of the SM.

Expected number of signal decays in 150 ab ⁻¹ at the Z peak

$$\begin{array}{ccc} & & & & & & & & \\ \phi K^0 & & & & & \\ K^+ K^- (\pi^+ \pi^-)_{K_s} & & \sim 4.9 \ 10^5 & & \sim 1.7 \ 10^4 \\ \\ \phi K^{*0} & & & & \\ K^+ K^- (\pi^+ \pi^-)_{K_s} \pi^0 & & \sim 2.1 \ 10^5 & & \sim 6.4 \ 10^3 \end{array}$$

Modelisation of the detector response

- Stand-alone parametrisation of the detector response :
 - Smearing of the momenta and angles of particles in the decays of interest
 - Parametrisation based on typical performance of a light tracker at a future ee detector
 - Excellent EM calo
 resolution

Charged particles : $p_{T} \text{ resolution}: \qquad \frac{\sigma(p_{T})}{p_{T}^{2}} = 2. \times 10^{-5} \oplus \frac{1.2 \times 10^{-3}}{p_{T} \sin \theta}$ $\phi, \theta \text{ resolution}: \qquad \sigma(\phi, \theta) \ \mu \text{rad} = 18 \oplus \frac{1.5 \times 10^{3}}{p_{T} \sqrt[3]{\sin \theta}}$ Vertex resolution : $\sigma(d_{Im}) \ \mu \text{m} = 1.8 \oplus \frac{5.4 \times 10^{1}}{p_{T} \sqrt{\sin \theta}}$	Acceptance :	$ \cos heta $	<	0.95
$p_{T} \text{ resolution}: \qquad \frac{\sigma(p_{T})}{p_{T}^{2}} = 2. \times 10^{-5} \oplus \frac{1.2 \times 10^{-3}}{p_{T} \sin \theta}$ $\phi, \theta \text{ resolution}: \qquad \sigma(\phi, \theta) \ \mu \text{rad} = 18 \oplus \frac{1.5 \times 10^{3}}{p_{T} \sqrt[3]{\sin \theta}}$ $\text{Vertex resolution}: \qquad \sigma(d_{\text{Im}}) \ \mu \text{m} = 1.8 \oplus \frac{5.4 \times 10^{1}}{p_{T} \sqrt{\sin \theta}}$	Charged particles :			
ϕ, θ resolution : $\sigma(\phi, \theta) \mu \text{rad} = 18 \oplus \frac{1.5 \times 10^3}{p_T \sqrt[3]{\sin \theta}}$ Vertex resolution : $\sigma(d_{\text{Im}}) \mu \text{m} = 1.8 \oplus \frac{5.4 \times 10^1}{p_T \sqrt{\sin \theta}}$	p_{T} resolution :	$rac{\sigma(p_T)}{p_T^2}$	=	$2. \times 10^{-5} \oplus \frac{1.2 \times 10^{-3}}{p_T \sin \theta}$
Vertex resolution : $\sigma(d_{Im}) \ \mu m = 1.8 \oplus \frac{5.4 \times 10^1}{p_T \sqrt{\sin \theta}}$	$\phi, heta$ resolution :	$\sigma(\phi, \theta) \ \mu \mathrm{rad}$	=	$18 \oplus rac{1.5 imes 10^3}{p_T \sqrt[3]{\sin heta}}$
	Vertex resolution :	$\sigma({ m d_{Im}})~\mu{ m m}$	=	$1.8 \oplus rac{5.4 imes 10^1}{p_T \sqrt{\sin heta}}$
$\mathrm{e},\gamma \;\mathrm{particles}:$	$\mathrm{e},\gamma \;\mathrm{particles}:$			
Energy resolution : $\frac{\sigma(E)}{E} = \frac{5 \times 10^{-2}}{\sqrt{E}} \oplus 5 \times 10^{-3}$	Energy resolution :	$rac{\sigma(E)}{E}$	=	$rac{5 imes10^{-2}}{\sqrt{E}}~\oplus~5 imes10^{-3}$
EM ϕ, θ resolution : $\sigma(\phi, \theta)$ mrad = $\frac{7}{\sqrt{E}}$	EM ϕ, θ resolution :	$\sigma(\phi, \theta) \operatorname{mrad}$	=	$\frac{7}{\sqrt{E}}$

- Common FCCSW : Full MC events + response of the IDEA detector with DELPHES
 - Detailed description of tracks, accounting for multiple scattering
 - Genuine vertex fitting

Vertex reconstruction

- Resolution on K_s , ϕ and B decay vertices : crucial to suppress the backgrounds
- Resolution on B_s decay vertex: crucial for time-dependent measurements !

Vertexing code (F. Bedeschi) extended recently to also handle neutrals. See FB's report at the <u>October Physics Perf. meeting</u>

Using only the tracks from the ϕ : resolution ~ 168 µm only ! (very small angular separation of the two kaon tracks) Adding the K_S "neutral tracks" : 70 µm

(for comparison: in ${\rm B_S} \to {\rm D_S}~({\rm KK}\pi$) K, resolution was ~ 20 μm)

Very good compared to the average flight distance of the B (\sim 3 mm) and no significant dilution of the B_s timedependent CP asymmetries.

E.Perez

Backgrounds: exclusive final states

Potential background contributions :

- Final states w/o long-lived particles, e.g. $\phi(KK) \rho(\pi\pi)$ or $\phi(KK) f_0(\pi\pi)$
 - Demand $M(\pi\pi) \sim K_s$ mass and $\pi\pi$ -vertex detached from ϕ
- Final states with K_s (or Λ), e.g. B \rightarrow K^{*0} K_s with K^{*0} \rightarrow K[±] π^{\mp}
 - They include a π instead of a K, or a p instead of a π
 - Can be reduced even w/o PID thanks to the mass resolution

Backgrounds: (semi-) exclusive final states

- Decays of $B_S \rightarrow D_S (\rightarrow \phi \pi) \pi \rightarrow K K \pi \pi$
 - Branching is 400x larger than $B_s \rightarrow \phi K_s \rightarrow K K \pi \pi$
 - Can be suppressed by an explicit reconstruction of $D_S \rightarrow \phi \pi$
 - (take the tracks from the ϕ , fit them with a 3rd track, if the chi2 is good and the vertex mass is consistent with the D_s mass, reject)

- More generally: background candidates come from a random combination of a K_s (e.g. from fragmentation) and a φ that comes from a D_s
 - E.g. $D_S \rightarrow \phi \mid \nu$, or $D_S \rightarrow \phi \pi + X$
 - Suppressed by a partial reconstruction of D_s decays: if ϕ + track can be fit to a common vertex, with mass < D_s mass + O(2x resolution), reject

Inclusive PYTHIA sample (signal events removed), passed through DELPHES

1 billion of bb events, 500 millions of cc events

Reconstruction:

- Identify "primary tracks", and consequently, "secondary tracks"
- Build ϕ and K_s candidates (opposite-charge tracks, same hemisphere, fit to a common vertex, mass consistent with ϕ or K_s)
 - K_s candidates: restricted to L < 1.5 m from the IP
- Build $B_{(s)}$ candidates from pairs of ϕ and K_s (same hemisphere, vertex fit of ϕ tracks + K_s)

In a first step: assume perfect PID – i.e. use MC-truth information to demand:

 ϕ legs = Kaons K_s legs = Pions

Signal efficiency: ~ 58%

Main loss = acceptance for the K_s

Backgrounds: inclusive bb and cc events

'erez

Final selection

Kinematic cuts to suppress combinatorial background:

- loose cuts on $p(\phi)$ and $p(K_s)$ (> 1 GeV)
- p (B) > 10 GeV

- reco'ed energy in signal hemisphere (w/o B candidate) < 28 GeV

Low MC statistics for B_s ! Still, confidence that the background can be kept small. Lower limit: S / B > 5 – 6 under the B_s peak.

31.01.24

Final selection (without any PID)

Perfect PID was assumed for the previous plots. Assuming no PID requirement at all :

Not much effect for B_d . For B_s , PID is crucial – background would be as large as the signal without any PID.

Expected sensitivity to CP parameters from ϕ K_s

Combined fit of Φ_{CKM} and $|\lambda|$ ($|\lambda| \neq 1$ quantifies direct CPV) and Φ_{CKM}

- 4 mrad on α_{ds} from B_d
- 10x better sensitivity with B_d than with B_s

Addition of $\phi \; \mathrm{K}^{*}$ ($\mathrm{K}^{*} \to \mathrm{K}_{\mathrm{S}} \; \pi^{0}$) decays

Efficiency for ϕ K^{*} : assumes x2 lower than ϕ K_s to account for π^0

 $B \rightarrow VV$ decay : CP asymmetries are diluted if one does not separate the different polarisations of the vector mesons

9	δ K _s	
Decay	$\sigma(\lambda_{ m L})$	$\sigma(lpha_{ m ds})$
$\overline{B}_d \to \phi \overline{K}^0$	0.005	0.004
$\overline{B}_s \to \phi K^0$	0.039	0.045

	ϕ K* (no a	<mark>mplitude</mark>	analysis)	
_	Decay	$\sigma(\lambda_{ m L})$	$\sigma(lpha_{ m ds})$	
_	$\overline{B}_d \to \phi \overline{K}^{*0}$	0.012	0.022	
_	$\overline{B}_s \to \phi K^{*0}$	0.07	0.14	

Amplitude analysis can improve the sensitivity by O(2)

NB: An excellent ECAL resolution is mandatory (e.g. 3% / \sqrt{E}) for B_S to ϕ K*, otherwise the B_S signal is polluted by the B_d

Conclusions

- The angle α_{ds} of the "flattest" unitarity angle can be measured at FCC-ee via $B_{(s)}$ to ϕK_s and $B_{(s)}$ to ϕK^*
- Very interesting sensitivities expected !
 - α_{ds} to 4 mrad
- Importance of :
 - A good reconstruction of K_s decays up to large flight distance
 - Hence a large tracking volume
 - Excellent mass and vertex resolutions
 - Light tracker and highly performant vertex detector
 - PID crucial for the B_s
 - Mode with K* demands in addition a powerful π^0 reconstruction and, for the B_s, an excellent ECAL resolution
- Precise determination of the background for the B_s would require 10 100x more Monte-Carlo statistics !
- Write-up is well advanced

Backup

Oscillation formulae including direct CPV

$$\Gamma(\overline{B}_{q}(t) \to f) = N_{q,f} |A_{q,f}|^{2} \left[\frac{1+\rho_{q}^{2}}{2}\right] e^{-\Gamma_{q}t} \times \left[\cosh\frac{\Delta\Gamma_{q}t}{2} - A_{CP}^{dir}\cos(\Delta m_{q}t) + A_{\Delta\Gamma_{q}}\sinh\frac{\Delta\Gamma_{q}t}{2} - A_{CP}^{mix}\sin(\Delta m_{q}t)\right]$$

$$\Gamma(B_{q}(t) \to f) = N_{q,f} |A_{q,f}|^{2} \left[\frac{1+\rho_{q}^{2}}{2}\right] e^{-\Gamma_{q}t} \times \left[\cosh\frac{\Delta\Gamma_{q}t}{2} + A_{CP}^{dir}\cos(\Delta m_{q}t) + A_{\Delta\Gamma_{q}}\sinh\frac{\Delta\Gamma_{q}t}{2} + A_{CP}^{mix}\sin(\Delta m_{q}t)\right]$$

$$(11)$$

with

$$A_{CP}^{dir} = \frac{1 - \rho_q^2}{1 + \rho_q^2} \quad , \quad A_{\Delta\Gamma_q} = -\frac{2Re\lambda_{q,f}}{1 + \rho_q^2} \quad , \quad A_{CP}^{mix} = -\frac{2Im\lambda_{q,f}}{1 + \rho_q^2} \tag{12}$$

$$\Gamma(B_{tagged}(t) \to f) = (1 - \omega)\Gamma(B_q(t) \to f) + \omega\Gamma(B_q(t) \to f)$$

$$\Gamma(B_{tagged}(t) \to f) = (1 - \omega)\Gamma(B_q(t) \to f) + \omega\Gamma(\overline{B}_q(t) \to f)$$

Mass of Phi and Ks candidates, basic reconstruction

K_s leg:	448 < m < 548 MeV Vertex chi2 < 10		
	flight distance $> 1 \text{ mm and} < 1.5 \text{ m}$		
	p > 1.5 GeV		
ϕ leg:	1.01 < m < 1.03 GeV Vertex chi2 < 10		
	p > 1 GeV		
perfect charged hadron PID for the K_s and ϕ tracks			
$B_{d,s}$ candidate:	the four tracks belong to the same hemishpere		
	$ m vertex~\chi^2 < 7.5$		
	$5.24 < m < 5.32$ GeV for B_d		
	$5.33 < m < 5.41$ GeV for B_s		
	p > 10 GeV		
Energy in signal hemisphere:	below 28 GeV		
(without the B candidate)			
no reconstructed $D_s^{\pm} \rightarrow \phi + \text{track} + X$ in signal hemisphere.			

BELLE: with 50ab-1, 14x less B/Bbar than FCC with 150 ab-1. With same efficiencies, uncertainty = 3.7 x larger than FCC

LHCb: hard to tell, have not reco'ed phi Ks (have reco'ed phi K* with K* -> K+ pi-)

Yield of 1000 B0 and 30 Bs for 1 fb^-1.

Also, flavour tagging more difficult...