# $B_{d, s} \rightarrow K^{* 0} \overline{K^{* 0}} \rightarrow K^{+} \pi^{-} K^{-} \pi^{+}$: a serious problem for the SM 

Based on work done with L. Oliver arXiv 2312.07198

R. Aleksan

FCC workshop Annecy
Jan. 29- Feb. 2, 2024
$>$ Theoretical background and Motivation
$>$ Theoretical issues
> Experimental study and sensitivities af FCC
> Conclusions

## Theoretical background and motivation

$$
\bar{B}_{S} \rightarrow \phi \phi \text { is a pure penguin decay }
$$


R.A. , L. Oliver
arXiv
$\underline{2205.07823}$

In the Naive Factorization (NF) Scheme (i.e. with top-dominance in mixing and decay)

$$
\left.\begin{array}{l}
\mathcal{A}\left(\bar{B}_{S} \rightarrow \phi \phi\right) \propto V_{t b} V_{t s}^{*}|\bar{M}| \\
\mathcal{A}\left(\bar{B}_{S} \rightarrow B_{s}\right) \times \mathcal{A}\left(B_{S} \rightarrow \phi \phi\right) \propto\left(V_{t b} V_{t s}^{*}\right)^{2} V_{t s} V_{t b}^{*}|M|
\end{array}\right] \mathcal{J} \propto\left(V_{t b} V_{t s}^{*}\right)\left(V_{t s} V_{t b}^{*}\right) \propto\left|V_{t b} V_{t s}^{*}\right|^{2} .
$$

$\Rightarrow$ Very good for probing BSM Physics
But to which extend can we rely on NF scheme (in particular with penguin modes) ?

Theoretical Issues (1/2)

In fact we cannot rely on NF: $\phi \phi$ is a Vector-Vector decay
$\Rightarrow$ polarized final states
$\begin{aligned} A_{L} & =A\left[B \rightarrow V_{1}(0) V_{2}(0)\right] \\ A_{ \pm} & =A\left[B \rightarrow V_{1}( \pm) V_{2}( \pm)\right]\end{aligned}$

| PDQ |  |  | NF | QCDF |
| :---: | :---: | :---: | :---: | :---: |
| $f_{L}=\Gamma_{L} / \Gamma$ | $\mathbf{0 . 3 7 8} \pm \mathbf{0 . 0 1 3}$ | $\mathrm{CP}(\eta=+1)$ | $\approx \mathbf{0 . 9 2}$ | $\approx 0.38 \pm 0.08$ |
| $f_{\\|}=\Gamma_{\\|} / \Gamma$ | $0.330 \pm 0.016$ | $\mathrm{CP}(\eta=+1)$ | $\approx \mathbf{0 . 0 4}$ | $\approx 0.31 \pm 0.04$ |
| $f_{\perp}=\Gamma_{\perp} / \Gamma$ | $0.292 \pm 0.009$ | $\mathrm{CP}(\eta=-1)$ | $\approx \mathbf{0 . 0 4}$ | $\approx 0.31 \pm 0.04$ |

$A_{\|}=\frac{1}{\sqrt{2}}\left(A_{+}+A_{-}\right)$
$A_{\perp}=\frac{1}{\sqrt{2}}\left(A_{+}-A_{-}\right)$
Due to V-A , $A_{L}: A_{-}: A_{+}=1: \frac{\Lambda_{Q C D}}{m_{b}}:\left(\frac{\Lambda_{Q C D}}{m_{b}}\right)^{2}$
$f_{\|} \approx f_{\perp} \ll f_{L}$

QCD Factorization adds many felicity dependent corrections


## CKM phases depend on polarization but all corrections remain very small



|  | unit | value |
| :---: | :---: | :---: |
| acceptance | $\%$ | 86 |
| $\sigma\left(m_{\phi}\right)$ | MeV | $\sim 1.5$ |
| $\sigma\left(m_{B_{s}}\right)$ | MeV | $\sim 7$. |
| $\sigma\left(d_{B_{S}}^{\text {flight }}\right)$ | $\mu \mathrm{m}$ | $\sim 20$. |

FCC sensitivity with time dependent fit

$$
\begin{aligned}
& \delta\left(\Delta \Gamma_{s, \phi \phi}^{F C C}\right) \approx 0.004 \\
& \delta\left(\phi_{\phi \phi}^{F C C}\right) \approx 0.5^{\circ}(\text { stat. })
\end{aligned}
$$

|  | unit | value |
| :---: | :---: | :---: |
| acceptance | $\%$ | 85 |
| $\sigma\left(m_{B_{S}}\right)$ | MeV | $\sim 8$. |
| $\sigma\left(d_{B_{S}}^{\text {flight }}\right)$ | $\mu \mathrm{m}$ | $\sim 20$. |

Essentially no combinatorial background if excellent PID (see LHCb) else good PID + excellent momemtum resolution




$$
\boldsymbol{B}_{\boldsymbol{d}, \boldsymbol{s}} \rightarrow \boldsymbol{K}^{* \mathbf{0}} \overline{\boldsymbol{K}^{* \mathbf{0}}} \rightarrow \boldsymbol{K}^{+} \boldsymbol{\pi}^{-} \boldsymbol{K}^{-} \boldsymbol{\pi}^{+} \text {leads to the same results }
$$



Special properties for $B_{d, s} \rightarrow K^{* 0} \overline{K^{* 0}} \rightarrow K^{+} \pi^{-} K^{-} \boldsymbol{\pi}^{+}$

## U-spin symmetry



One expects the same values for $f_{L}, f_{\|}$and $f_{\perp}$ in $B_{d} \rightarrow K^{* 0} \overline{K^{* 0}}$ and $B_{S} \rightarrow K^{* 0} \overline{K^{* 0}}$ modulo $\operatorname{SU}(3)$ breaking

Note : We have also calculated $B r, f_{L}, f_{\|}, f_{\perp}$ and $A_{C P}$ for numbers of B-mesons to light Vector-Vector meson and compared with existing data (paper to come soon). FCCee will make a real breakthrough in $B \rightarrow V_{1}^{\text {light }} V_{2}^{\text {light }}$ decays

## Comparing data and QCDF (1/3)

| modes |  | LHCb | QCDF |
| :---: | :---: | :---: | :---: |
| $\boldsymbol{B}_{\boldsymbol{d}} \rightarrow \boldsymbol{K}^{* 0} \overline{\boldsymbol{K}^{* 0}}$ | $f_{L}=\Gamma_{\boldsymbol{L}} / \Gamma$ | $\mathbf{0 . 7 2 4} \pm \mathbf{0 . 0 5 3}$ | $0.498 \pm 0.086$ |
|  | $f_{\\|}=\Gamma_{\\|} / \Gamma$ | $0.116 \pm 0.035$ | $0.251 \pm 0.043$ |
|  | $f_{\perp}=\Gamma_{\perp} / \Gamma$ | $0.160 \pm 0.046$ | $0.251 \pm 0.043$ |
| $\boldsymbol{B}_{\boldsymbol{S}} \rightarrow \boldsymbol{K}^{* 0} \overline{\boldsymbol{K}^{* \mathbf{0}}}$ | $f_{L}=\Gamma_{\boldsymbol{L}} / \Gamma$ | $\mathbf{0 . 2 4 0} \pm \mathbf{0 . 0 4 0}$ | $0.429 \pm 0.088$ |
|  | $f_{\\|}=\Gamma_{\\|} / \Gamma$ | $0.234 \pm 0.027$ | $0.286 \pm 0.044$ |
|  | $f_{\perp}=\Gamma_{\perp} / \Gamma$ | $\mathbf{0 . 5 2 6} \pm \mathbf{0 . 0 3 7}$ | $0.286 \pm 0.044$ |

## LHCb

$$
\begin{aligned}
& f_{L}^{\boldsymbol{B}_{\boldsymbol{d}} \rightarrow \boldsymbol{K}^{* 0} \overline{\boldsymbol{K}^{* 0}}} \gg f_{L}^{\boldsymbol{B}_{s} \rightarrow \boldsymbol{K}^{* 0} \overline{\boldsymbol{K}^{* 0}}} \\
& f_{\perp}^{\boldsymbol{B}_{s} \rightarrow \boldsymbol{K}^{* 0} \overline{\boldsymbol{K}^{* 0}}} \gg f_{\|}^{\boldsymbol{B}_{s} \rightarrow \boldsymbol{K}^{* 0}} \overline{\boldsymbol{K}^{* 0}}
\end{aligned}
$$

QCDF
while

$$
\begin{aligned}
f_{L}^{\boldsymbol{B}_{\boldsymbol{d}} \rightarrow K^{* 0}} \overline{K^{* \mathbf{0}}} & \approx f_{L}^{\boldsymbol{B}_{\boldsymbol{s}} \rightarrow K^{* 0}} \overline{\boldsymbol{K}^{* \mathbf{0}}} \\
f_{\perp}^{\boldsymbol{B}_{s} \rightarrow K^{* 0}} \overline{\boldsymbol{K}^{* \mathbf{0}}} & \approx f_{\|}^{\boldsymbol{B}_{\boldsymbol{s}} \rightarrow K^{* 0}} \overline{K^{* \mathbf{0}}}
\end{aligned}
$$

## Comparing data and QCDF (2/3)



While the measured ratio of the Branching Fractions is compatible with the expectations from QCDF , the ratio of the longitudinal is $>3 \sigma$ away from the predictions.

## Comparing data and QCDF (3/3)

Similarly the measured parallel polarization and the perpendicular one are significantly different from the expectations from QCDF, in particular for the $B_{s} \rightarrow K^{* 0} \overline{K^{* 0}}$ decay ( $>3 \sigma$ ) away from the predictions).



## Summary

One needs to improve both

- the uncertainties of the theory
- the precision of the measurement (in particular for Bs; a factor 2 reduction of errors would lead to the significance exceeding $5 \sigma$ )
@FCC , large number of $B_{d, s} \rightarrow K^{* 0} \overline{K^{* 0}}$ decays: very good to search for BSM physics
- In CP violation studies (as discussed earlier no CP violation expected)
- But also in polarization measurements

|  |  | $\mathrm{E}_{\mathrm{cm}}=\mathrm{m}_{\mathrm{Z}}$ and $\int \mathrm{L}=150 \mathrm{ab}^{-1}$ |  |
| :---: | :---: | :---: | :---: |
| $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z}\right)$ <br> nb | number <br> of Z | $\mathrm{f}\left(\mathrm{Z} \rightarrow \overline{\mathrm{B}_{\mathrm{s}}}\right)$ | Number of <br> produced $\overline{\mathrm{B}}$ |
| $\sim 42.9$ | $\sim 6.410^{12}$ | 0.0159 | $\sim 110^{11} \overline{\mathrm{~B}}_{s}$ |
| $\sim 42.9$ | $\sim 6.410^{12}$ | 0.0608 | $\sim 3.910^{11} \overline{\mathrm{~B}}_{d}$ |
| $\overline{\mathrm{~B}}$ decay | $\mathrm{K}^{* 0}$ Decay | Final | Number of |
| Mode | Mode | State | $\overline{\mathrm{B}}$ decays |
|  |  | $\mathrm{K}^{+} \pi^{-} \mathrm{K}^{-} \pi^{+}$ | $\sim 4.910^{5}$ |
| $\overline{\mathrm{~B}}_{s} \rightarrow \mathrm{~K}^{* 0} \overline{\mathrm{~K}}^{* 0}$ | $\mathrm{~K}^{+} \pi^{-}$ | $\mathrm{K}^{+} \pi^{-} \mathrm{K}^{-} \pi^{+}$ | $\sim 1.410^{5}$ |
| $\overline{\mathrm{~B}}_{d} \rightarrow \mathrm{~K}^{* 0} \overline{\mathrm{~K}}^{+0}$ | $\mathrm{~K}^{+} \pi^{-}$ |  |  |



Very small combinatorial background is expected if excellent PID (cf. LHCb) : to be verified @FCCee

## Polarization measurements @FCC

$$
\begin{aligned}
& \frac{d \Gamma\left(\bar{B}_{d, 9} \rightarrow \mathrm{~K}^{*}+\bar{K}^{+0}\right)}{d \cos \theta_{1} d \cos \theta_{2} d \phi} \propto\left|\overline{\mathcal{A}}_{0}\right|^{2} \cos ^{2} \theta_{1} \cos ^{2} \theta_{2}+\frac{\left|\overline{\mathcal{A}}_{+}+\left.\right|^{2}+|\overline{\mathcal{A}}-|^{2}\right.}{4} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \\
& -\left[\Re\left(e^{-i \phi} \overline{\mathcal{A}}_{0} \overline{\mathcal{A}}_{+}^{*}\right)+\Re\left(e^{i \phi} \overline{\mathcal{A}}_{0} \overline{\mathcal{A}}_{-}^{*}\right)\right] \cos \theta_{1} \sin \theta_{1} \cos \theta_{2} \sin \theta_{2} \\
& +\frac{\Re\left(e^{24}+\overline{\mathcal{A}}+\overline{\mathcal{A}}_{-}^{*}\right)}{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \\
& f_{L, \|, \perp}^{\left(B_{d} \rightarrow K^{*} \overline{K^{* 0}}\right)} \approx 0.004 \\
& f_{L, \|, \perp}^{\left(B_{s} \rightarrow K^{* 0} \overline{K^{* 0}}\right)} \approx 0.002
\end{aligned}
$$

$$
\text { QCDF } \Rightarrow f_{L}: f_{\perp}: f_{\|}=0.5: 0.25: 0.25
$$

$$
\mathrm{LHCb} \Rightarrow f_{L}: f_{\perp}: f_{\|}=0.25: 0.25: 0.5
$$








## Conclusions

$B_{d, s} \rightarrow K^{* 0} \overline{K^{* 0}}$ decays: excellent candidates to search for BSM physics :
$>$ With CP violation studies (as good as $B_{s} \rightarrow \phi \phi$ )
$>$ With measurements of polarizations

- where there is evidence for anomaly in the present data

FCC-ee would enable ultra precise measurements for search of new physics
$>$ With CP violation measurements

- at the sub-degree level for the CP phase
- at the sub \% level for direct CP measurement
$>$ for measurements of polarizations
- at the sub \% level

To achieve these figures :
$>$ Excellent momentum resolution is necessary
> Excellent PID is mandatory

Still to be done : study of combinatoric backgound to verify that it is small.

## Conclusions (addendum)

One could increase the statistics ( $+30 \%$ ) using $K^{* 0} \rightarrow K^{0} \pi^{0}$ for one of the $K^{* 0}$ (useful for polarization measurement) ... but strong constraint on Electromagnetic calorimeter


$$
\frac{\delta E}{E}=\frac{0.08}{\sqrt{E}}+0.005+\frac{0.005}{E}
$$




Note : In this case, combinatoric background needs definitely to be studied

Additional Slides

Simulated detector


Tracking is completely simulated including

- Multiple scattering with all material
- Track fitting and then parametrization



## Time dependent analysis

$$
\begin{aligned}
\Gamma\left(\bar{B}_{s} \rightarrow \phi \phi\right)= & |<\phi \phi| B_{s}>\left.\right|^{2} \times e^{-\Gamma t}\left\{\cosh \frac{\Delta \Gamma}{2} \Theta(1-2 \omega) A_{C P}^{d i r} \cos \Delta m t\right. \\
& \left.+A_{\Delta \Gamma} \sinh \frac{\Delta \Gamma}{2} \bigodot(1-2 \omega) A_{C P}^{m i x} \sin \Delta m t\right\} \\
\Gamma\left(B_{s} \rightarrow \phi \phi\right)= & |<\phi \phi| B_{s}>\left.\right|^{2} \times e^{-\Gamma t}\left\{\cosh \frac{\Delta \Gamma}{2} \oplus(1-2 \omega) A_{C P}^{d i r} \cos \Delta m t\right. \\
& \left.+A_{\Delta \Gamma} \sinh \frac{\Delta \Gamma}{2} \oplus(1-2 \omega) A_{C P}^{m i x} \sin \Delta m t\right\}
\end{aligned}
$$

$$
A_{C P}^{d i r}=\frac{1-\left|\lambda_{f}\right|^{2}}{1+\left|\lambda_{f}\right|^{2}}, \quad A_{C P}^{m i x}=-\frac{2 \operatorname{Im} \lambda_{f}}{1+\left|\lambda_{f}\right|^{2}}, \quad A_{\Delta \Gamma}=-\frac{2 \operatorname{Re} \lambda_{f}}{1+\left|\lambda_{f}\right|^{2}}
$$

$\omega=$ wrong tagging $=0.25$

|  | LEP | BaBar | LHCb |
| :---: | :---: | :---: | :---: |
| $\epsilon(1-2 \omega)^{2}$ | $25-30 \%$ | $30 \%$ | $6 \%$ |

Can be obtained very precisely from $B_{S} \rightarrow D_{S}^{-} \pi^{+}$see
https://arxiv.org/abs/2107.02002

$$
\delta(\omega)_{\text {stat }}=1.4 \times 10^{-4}
$$

$$
\lambda_{\phi \phi}^{(k)}=\left(\frac{q}{p}\right)_{B_{s}} \frac{A\left(\bar{B}_{s} \rightarrow \phi \phi, k\right)}{A\left(B_{s} \rightarrow \phi \phi, k\right)}=\eta_{k}\left|\lambda_{\phi \phi}^{(k)}\right| e^{-i \phi_{\phi \phi}^{(k)}} \quad A_{C P}^{m i x} \approx-\eta_{\phi \phi}^{e f f} \sin \phi_{\phi \phi}
$$

$$
\begin{aligned}
& \text { If no angular analysis } \\
& \text { reduced sensitivity since } \\
& \eta_{\phi \phi}^{e f f}=1-2 f_{\perp} \approx 0.416
\end{aligned}
$$

the sensitivity is improved by factor ~2

## Study of CP violation with $B_{s} \rightarrow \phi \phi \rightarrow K^{+} K^{-} K^{+} K^{-}$

Large number of events expected @FCCee

Generated: $\begin{gathered}\left|\lambda_{\phi \phi}\right|=1 . \\ \sin \phi_{\phi \phi}=0.05\end{gathered}$

| $\overline{\mathrm{B}_{\mathrm{s}}}$ decay | Decay | Final | Number of |
| :---: | :---: | :---: | :---: |
| Mode | Mode | State | $\overline{\mathrm{B}_{\mathrm{s}}}$ decays |
|  |  |  |  |
| $\phi \phi$ | $\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$ | $\mathrm{K}^{+} \mathrm{K}^{-} \mathrm{K}^{+} \mathrm{K}^{-}$ | $\sim 4.710^{5}$ |

## $510^{3}$ experiments generated with $8.210^{5}$ each



Study of CP violation with $B_{s} \rightarrow \phi \phi \rightarrow K^{+} K^{-} K^{+} K^{-}$
simulation generated with $\lambda_{\phi \phi}=1$ and $\phi_{\phi \phi}=0.05 \mathrm{rad}$






$$
\text { Small difference between } \overline{B_{d}} \rightarrow K^{* 0} \overline{K^{* 0}} \text { and } \overline{B_{s}} \rightarrow K^{* 0} \overline{K^{* 0}}, h
$$

$$
\begin{aligned}
& \mathcal{A}\left(\overline{B_{d}} \rightarrow K^{* 0} \overline{K^{* 0}}, h\right)=\sum_{p=u, c} \lambda_{p} S^{p, h} A^{h}\left(\overline{B_{d}} \rightarrow K^{* 0} \overline{K^{* 0}}\right)+\left(\lambda_{u}+\lambda_{c}\right) T^{p, h} B^{h}\left(\overline{B_{d}} \rightarrow K^{* 0} \overline{K^{* 0}}\right) \\
& \mathcal{A}\left(\overline{B_{s}} \rightarrow K^{* 0} \overline{K^{* 0}}, h\right)=\sum_{p=u, c} \lambda_{p}^{\prime} S^{p, h} A^{h}\left(\overline{B_{s}} \rightarrow K^{* 0} \overline{K^{* 0}}\right)+\left(\lambda_{u}^{\prime}+\lambda_{c}^{\prime}\right) T^{p, h} B^{h}\left(\overline{B_{s}} \rightarrow K^{* 0} \overline{K^{* 0}}\right) \\
& \lambda_{p}=V_{p b} V_{p d}^{*} \quad S^{p, h} \text { and } T^{p, h} \text { are combinations of Wilson coefficients and are identical } \\
& \lambda_{p}^{\prime}=V_{p b} V_{p s}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& A^{0}\left(\overline{B_{d, s}} \rightarrow K^{* 0} \overline{K^{* 0}}\right)=\mathrm{i} \frac{G_{F}}{\sqrt{2}} m_{B_{d, s}}^{2} A_{0}^{\overline{B_{d, s}} \rightarrow \overline{K^{* 0}}}\left(m_{K^{* 0}}^{2}\right) f_{K^{* 0}} \\
& A^{-}\left(\overline{B_{d, s}} \rightarrow K^{* 0} \overline{K^{* 0}}\right)=\mathrm{i} \frac{G_{F}}{\sqrt{2}} m_{B_{d, s}} m_{K^{* 0}} F_{-}^{\overline{B_{d, s}}} \overline{K^{* 0}}\left(m_{K^{* 0}}^{2}\right) f_{K^{* 0}} \\
& B^{0}\left(\overline{B_{d, s}} \rightarrow K^{* 0} \overline{K^{* 0}}\right)=B^{-}\left(\overline{B_{d, s}} \rightarrow K^{* 0} \overline{K^{* 0}}\right)=\mathrm{i} \frac{G_{F}}{\sqrt{2}} f_{B_{d, s}} f_{K^{* 0}}^{2}
\end{aligned}
$$

Main uncertainty comes from the $B_{d}$ and $B_{s}$ form factors obtained from lattice QCD

