$B_{d,s} \to K^{*0}\overline{K^{*0}} \to K^+\pi^-K^-\pi^+$: a serious problem for the SM

Based on work done with L. Oliver arXiv 2312.07198 R. Aleksan FCC workshop Annecy Jan. 29- Feb. 2, 2024

- Theoretical background and Motivation
- Theoretical issues
- Experimental study and sensitivities af FCC
- Conclusions

Theoretical background and motivation

R.A., L. Oliver arXiv 2205.07823

In the Naive Factorization (NF) Scheme (i.e. with top-dominance in mixing and decay)

 $\mathcal{A}(\bar{B}_{S} \to \phi\phi) \propto V_{tb}V_{ts}^{*}|\bar{M}|$ $\mathcal{A}(\bar{B}_{S} \to B_{S}) \times \mathcal{A}(B_{S} \to \phi\phi) \propto (V_{tb}V_{ts}^{*})^{2}V_{ts}V_{tb}^{*}|M|$ $\mathcal{I} \propto (V_{tb}V_{ts}^{*})(V_{ts}V_{tb}^{*}) \propto |V_{tb}V_{ts}^{*}|^{2}$ ⊏> No CP

Very good for probing BSM Physics

But to which extend can we rely on NF scheme (in particular with penguin modes)?

Theoretical Issues (1/2)

In fact we <u>cannot rely</u> on NF: $\phi\phi$ is a Vector-Vector decay \Rightarrow polarized final states

 $\begin{aligned} A_L &= A[B \rightarrow V_1(0)V_2(0)] \\ A_{\pm} &= A[B \rightarrow V_1(\pm)V_2(\pm)] \end{aligned}$

		PDG	NF	QCDF	
~	$f_L = \Gamma_L / \Gamma$	$\textbf{0.378} \pm \textbf{0.013}$	CP (η=+1)	≈ 0.92	$pprox$ 0.38 \pm 0.08
	$f_{\parallel} = \Gamma_{\parallel} / \Gamma$	0.330 ± 0.016	CP (η=+1)	≈ 0.04	$pprox$ 0.31 \pm 0.04
	$f_{\perp} = \Gamma_{\perp} / \Gamma$	0.292 ± 0.009	СР (η=−1)	≈ 0.04	$pprox$ 0.31 \pm 0.04

$$A_{\parallel} = \frac{1}{\sqrt{2}} (A_{+} + A_{-})$$

$$A_{\perp} = \frac{1}{\sqrt{2}} (A_{+} - A_{-})$$
Due to V-A, $A_{L}: A_{-}: A_{+} = 1: \frac{\Lambda_{QCD}}{m_{b}}: \left(\frac{\Lambda_{QCD}}{m_{b}}\right)^{2} \longrightarrow f_{\parallel} \approx f_{\perp} \ll f_{L}$

QCD Factorization adds many helicity dependent corrections

Theoretical Issues (2/2)

CKM phases depend on polarization but all corrections remain very small

$$\begin{vmatrix} \lambda_{\phi\phi}^{L,QCDF} \\ \phi_{\phi\phi}^{L,QCDF} \\ \approx 1.013^{+0.005}_{-0.003} \\ \phi_{\phi\phi}^{L,QCDF} \\ \approx 180.17^{+0.36}_{-027} \text{ deg} \end{vmatrix}$$
$$\begin{vmatrix} \lambda_{\phi\phi}^{\parallel,QCDF} \\ \phi_{\phi\phi}^{\parallel,QCDF} \\ \end{vmatrix} = \begin{vmatrix} \lambda_{\phi\phi}^{\perp,QCDF} \\ \approx 1.004^{+0.001}_{-0.001} \\ \phi_{\phi\phi}^{\parallel,QCDF} \\ = \phi_{\phi\phi}^{\perp,QCDF} \\ \approx 180.09^{+0.10}_{-0.11} \text{ deg} \end{vmatrix}$$

	unit	value
acceptance	%	86
$\sigma(m_{\phi})$	MeV	~1.5
$\sigma(m_{B_s})$	MeV	~7.
$\sigma(d_{B_S}^{flight})$	μm	~20.

FCC sensitivity with time dependent fit

$$\begin{split} &\delta\left(\Delta\Gamma^{FCC}_{s,\phi\phi}\right)\approx 0.004\\ &\delta\left(\phi^{FCC}_{\phi\phi}\right)\approx 0.5^{\circ}\left(stat.\right) \end{split}$$

(See backup slides)	Detect	tor	response is parame	trized		unit
Acceptance :	$ \cos \theta $	<	0.95		acceptance	%
Track p_T resolution :	$\frac{\sigma(p_T)}{p_{\pi}^2}$	=	$2. \times 10^{-5} \oplus \frac{1.2 \times 10^{-3}}{p_T \sin \theta}$		$\sigma(m_{B_s})$	MeV
Track ϕ, θ resolution :	$\sigma(\phi, \theta) \ \mu \mathrm{rad}$	=	$18 \oplus \frac{1.5 \times 10^3}{p_T \sqrt[3]{\sin \theta}}$		$\sigma(d_{B_S}^{flight})$	μm
Vertex resolution :	$\sigma({ m d_{Im}})~\mu{ m m}$	=	$1.8 \oplus \frac{5.4 \times 10^1}{p_T \sqrt{\sin \theta}}$			
Vertex resolution :	$< \sigma(d_{Im}) >$	\simeq	$10 \ \mu m$		Essentially no	combina
Calorimeter resolution :	$\frac{\sigma(E)}{E}$	=	$\frac{5 \times 10^{-2}}{\sqrt{E}} \oplus 5 \times 10^{-3}$		+ excellent m	omemtun

	unit	value
acceptance	%	85
$\sigma(m_{B_s})$	MeV	~8.
$\sigma(d_{B_S}^{flight})$	μm	~20.

torial background Cb) else good PID n resolution

Special properties for $B_{d,s} \to K^{*0} \overline{K^{*0}} \to K^+ \pi^- K^- \pi^+$

One expects the same values for f_L , f_{\parallel} and f_{\perp} in $B_d \to K^{*0}\overline{K^{*0}}$ and $B_s \to K^{*0}\overline{K^{*0}}$ modulo SU(3) breaking

Note : We have also calculated Br, f_L , f_{\parallel} , f_{\perp} and A_{CP} for numbers of B-mesons to light Vector-Vector meson and compared with existing data (paper to come soon) . FCCee will make a real breakthrough in $B \rightarrow V_1^{\text{light}} V_2^{\text{light}}$ decays

Comparing data and QCDF (1/3)

modes		LHCb	QCDF
	$f_L = \Gamma_L / \Gamma$	0.724 ± 0.053	0.498 ±0.086
$B_d \to K^{*0} \overline{K^{*0}}$	$f_{\parallel} = \Gamma_{\parallel} / \Gamma$	0.116 ± 0.035	0.251 <u>+</u> 0.043
	$f_{\perp} = \Gamma_{\perp} / \Gamma$	0.160 ± 0.046	0.251 <u>+</u> 0.043
	$f_L = \Gamma_L / \Gamma$	0.240 ± 0.040	0.429 <u>+</u> 0.088
$B_s \to K^{*0} \overline{K^{*0}}$	$f_{\parallel} = \Gamma_{\parallel} / \Gamma$	0.234±0.027	0.286 ±0.044
	$f_{\perp} = \Gamma_{\perp} / \Gamma$	0.526±0.037	0.286 ±0.044

LHCb

while

QCDF

 $f_{L}^{B_{d} \to K^{*0}\overline{K^{*0}}} \approx f_{L}^{B_{s} \to K^{*0}\overline{K^{*0}}}$ $f_{\perp}^{B_{s} \to K^{*0}\overline{K^{*0}}} \approx f_{\parallel}^{B_{s} \to K^{*0}\overline{K^{*0}}}$

Comparing data and QCDF (2/3)

While the measured ratio of the Branching Fractions is compatible with the expectations from QCDF, the ratio of the longitudinal is $> 3 \sigma$ away from the predictions.

Comparing data and QCDF (3/3)

Similarly the measured parallel polarization and the perpendicular one are significantly different from the expectations from QCDF, in particular for the $B_s \rightarrow K^{*0}\overline{K^{*0}}$ decay (> 3 σ) away from the predictions).

Summary

One needs to improve both

- the uncertainties of the theory
- the precision of the measurement (in particular for Bs; a factor 2 reduction of errors would lead to the significance exceeding 5σ)

@FCC , large number of $B_{d,s} \rightarrow K^{*0}\overline{K^{*0}}$ decays : very good to search for BSM physics

- In CP violation studies (as discussed earlier no CP violation expected)
- But also in polarization measurements

		$E_{cm} = m_Z$ and $\int L = 150 ab^{-1}$	
$\sigma(e^+e^- \rightarrow Z)$	number	$f(Z \rightarrow \overline{B_s})$	Number of
nb	of Z		produced $\overline{\mathbf{B}}$
~ 42.9	$\sim 6.4 \ 10^{12}$	0.0159	$\sim 1 \ 10^{11} B_{g}$
~ 42.9	$\sim 6.4 \ 10^{12}$	0.0608	$\sim 3.9 \ 10^{11} \overline{B}_d$
	_		
B decay	K ^{*0} Decay	Final	Number of
Mode	Mode	State	B decays
$\overline{B}_{g} \rightarrow K^{*0}\overline{K}^{*0}$	$K^+\pi^-$	$K^+\pi^-K^-\pi^+$	$\sim 4.9 \ 10^5$
$\overline{B}_d \rightarrow K^{*0} \overline{K}^{*0}$	$K^+\pi^-$	$K^+\pi^-K^-\pi^+$	$\sim 1.4~10^5$

Very small combinatorial background is expected if excellent PID (cf. LHCb) : to be verified @FCCee

Polarization measurements @FCC

Conclusions

 $B_{d,s} \rightarrow K^{*0}\overline{K^{*0}}$ decays : excellent candidates to search for BSM physics :

- \succ With CP violation studies (as good as $B_s \rightarrow \phi \phi$)
- With measurements of polarizations
 - where there is evidence for anomaly in the present data

FCC-ee would enable ultra precise measurements for search of new physics

- With CP violation measurements
 - at the *sub-degree level for the CP phase*
 - at the *sub % level for direct CP measurement*
- ➢ for measurements of polarizations
 - at the *sub % level*

To achieve these figures :

- Excellent momentum resolution is necessary
- Excellent PID is mandatory

Still to be done : study of combinatoric backgound to verify that it is small.

Conclusions (addendum)

One could increase the statistics (+30%) using $K^{*0} \rightarrow K^0 \pi^0$ for one of the K^{*0} (useful for polarization measurement) ... but strong constraint on Electromagnetic calorimeter

Note : In this case, combinatoric background needs definitely to be studied

Additional Slides

Simulated detector

Time dependent analysis

$$\begin{split} \Gamma(\overline{B}_s \to \phi \phi) &= | < \phi \phi | B_s > |^2 \times e^{-\Gamma t} \{ \cosh \frac{\Delta \Gamma}{2} \bigoplus (1 - 2\omega) A_{CP}^{dir} \cos \Delta m t \\ &+ A_{\Delta \Gamma} \sinh \frac{\Delta \Gamma}{2} \bigoplus (1 - 2\omega) A_{CP}^{mix} \sin \Delta m t \} \\ \Gamma(B_s \to \phi \phi) &= | < \phi \phi | B_s > |^2 \times e^{-\Gamma t} \{ \cosh \frac{\Delta \Gamma}{2} \bigoplus (1 - 2\omega) A_{CP}^{dir} \cos \Delta m t \\ &+ A_{\Delta \Gamma} \sinh \frac{\Delta \Gamma}{2} \bigoplus (1 - 2\omega) A_{CP}^{mix} \sin \Delta m t \} \end{split}$$
$$\begin{aligned} A_{CP}^{dir} &= \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} , \qquad A_{CP}^{mix} &= -\frac{2Im\lambda_f}{1 + |\lambda_f|^2} , \qquad A_{\Delta \Gamma} = -\frac{2Re\lambda_f}{1 + |\lambda_f|^2} \end{split}$$

$\omega = wrong \ tagging = 0.25$					
	LEP	BaBar	LHCb		
$\epsilon (1-2\omega)^2$	25 - 30%	30%	6%		

Can be obtained very precisely from $B_s \rightarrow D_s^- \pi^+$ see

https://arxiv.org/abs/2107.02002

$$\delta(\omega)_{stat} = 1.4 \times 10^{-4}$$

If no angular analysis reduced sensitivity since $\eta_{\phi\phi}^{eff} = 1 - 2f_{\perp} \approx 0.416$

 $\lambda_{\phi\phi}^{(k)} = \left(\frac{q}{p}\right)_{p} \frac{A(B_s \to \phi\phi, k)}{A(B_s \to \phi\phi, k)} = \eta_k \mid \lambda_{\phi\phi}^{(k)} \mid e^{-i\phi_{\phi\phi}^{(k)}} \qquad A_{CP}^{mix} \approx -\eta_{\phi\phi}^{eff} \sin\phi_{\phi\phi}$

If angular analysis (tbd) the sensitivity is improved by factor ~2

Small difference between $\overline{B_d} \to K^{*0} \overline{K^{*0}}$ and $\overline{B_s} \to K^{*0} \overline{K^{*0}}$, h

$$\mathcal{A}\left(\overline{B_d} \to K^{*0}\overline{K^{*0}}, h\right) = \sum_{p=u,c} \lambda_p S^{p,h} A^h \left(\overline{B_d} \to K^{*0}\overline{K^{*0}}\right) + (\lambda_u + \lambda_c) T^{p,h} B^h \left(\overline{B_d} \to K^{*0}\overline{K^{*0}}\right)$$
$$\mathcal{A}\left(\overline{B_s} \to K^{*0}\overline{K^{*0}}, h\right) = \sum_{p=u,c} \lambda'_p S^{p,h} A^h \left(\overline{B_s} \to K^{*0}\overline{K^{*0}}\right) + (\lambda'_u + \lambda'_c) T^{p,h} B^h \left(\overline{B_s} \to K^{*0}\overline{K^{*0}}\right)$$

$$\lambda_p = V_{pb}V_{pd}^*$$

 $\lambda'_p = V_{pb}V_{ps}^*$
 $S^{p,h}$ and $T^{p,h}$ are combinations of Wilson coefficients and are identical in both modes

$$A^{0}\left(\overline{B_{d,s}} \to K^{*0}\overline{K^{*0}}\right) = \mathrm{i} \frac{G_{F}}{\sqrt{2}}m_{B_{d,s}}^{2}A_{0}^{\overline{B_{d,s}} \to \overline{K^{*0}}}(m_{K^{*0}}^{2})f_{K^{*0}}$$
$$A^{-}\left(\overline{B_{d,s}} \to K^{*0}\overline{K^{*0}}\right) = \mathrm{i} \frac{G_{F}}{\sqrt{2}}m_{B_{d,s}}m_{K^{*0}}F_{-}^{\overline{B_{d,s}} \to \overline{K^{*0}}}(m_{K^{*0}}^{2})f_{K^{*0}}$$

Main uncertainty comes from the B_d and B_s form factors obtained from lattice QCD

$$B^{0}\left(\overline{B_{d,s}} \to K^{*0}\overline{K^{*0}}\right) = B^{-}\left(\overline{B_{d,s}} \to K^{*0}\overline{K^{*0}}\right) = \mathrm{i} \ \frac{G_{F}}{\sqrt{2}} f_{B_{d,s}} f_{K^{*0}}^{2}$$