Towards occupancy and bandwidth requirements for highly granular calorimeters at FCCee

V. Boudry*, K. Hassouna^a, L. Portales^b

Institut Polytechnique de Paris IPP PSEI and U. of Manoa Now at CEA-IRFU

LR

Rationale

ILD high granularity calorimeters

- Designed for ILC
 - Power pulsing, low occupancy
- Marginally adapted for CLIC and CLD
 - Physics : number of layers
- Partially adapted for CEPC
 - Lower granularity
- Needs strong adaptation for EW physics and continuous operation
 - Rates, Heat, Electronics

ECAL: 30 layers

- SiW-ECAL": 0.5×0.5 cm³ Si cells
- ScECAL: 0.5×5 cm² Scint strips

10-100M channels

HCAL: 48 layers

- AHCAL: 3×3 cm³ scint. cells
- ScECAL: 1×1 cm² RPC cells

10-70M channels

Revisiting the HG calorimeters for circular colliders

Large panel of running conditions

- 90GeV × 10⁷ fb × 5·10³⁶ cm⁻² s⁻¹ (qq × 20000 ILC @ 250)
- 150 GeV (WW) + 250 GeV (ZH)+ 280 GeV (tt) ~10⁴ fb × $5 \cdot 10^{35}$ cm⁻² s⁻¹ (qq × 5-10 ILC @ 250)

Are the current hypothesis viable

- ?
 - Occupancy,
 DAQ,
 Cooling

- 1 detector fit-all ?
 - What are the limits :
- power vs Granularity vs active cooling ?New electronics (DRD6):
 - TSMC 130 nm vs AMS 130 nm (or 65nm)
 - Down to 1mW / ch ? Timing ?
 - Running mode (continuous, triggerless)
 - Trigger for other detectors ?

Calorimeter Fluxes from Full Simulations

Quantities useful for self-triggering, low occupacy, Front-End electronics & Design

- Number of hits/s per ASICs
 - → Power (Energy per conversion)
 - → Memory size
- Distribution of Energy & Time
 - → Dynamic ranges
 - → Power per conversion (Wilkinson ADCs)
 - → Double hits
- Data output
 - → Data Flux per readout partition (DAQ)
 - \rightarrow DAQ scheme (Calo trigger to other parts ?)

Other quantities

- Deposited energies
 - → Radiation

Histograms Types

Primary histograms:

- **1)Low-Scale Energy**: Energy distribution of hits with an upper-bound
- **2)Upper-Scale Energy**: Complementary distribution to show the tailing effects (with auto-rescaling)
- **3)Low-Scale Number of hits**: Number of hits above a given energy threshold per event (adjusted per system ~ ¼ MIP)
- 4)Upper-Scale Number of hits: The complementary distribution with auto-r
- 5)Time: Time distribution of the sub hits weighted with the corresponding ene

Secondary histograms (functions of primary histograms): 11 calorimeter system

- **6)Upper Scale Energy rates in MIPs**: The same distribution as the Upper-Scale Energy histogram with the x-axis scaled by the MIP value.
- 7)Full Scale Hits rates: Number of hits per region from Low and high scales

8)Full Scale Power: base power + conversion energy per hit [TBD, based on ASICs characteristics]

khahidenas Bounda@@n.in2p3.fr

Calorimeter Fluxes | FCC Physics week, 30/01/24

System "SiECalEndcap": "SiECALBarrel": "SiECalRing": (["ScECalEndcap": "ScECALBarrel": "RPCHCalEndcap": "RPCHCalBarrel": "RPCHCalECRing": "ScHCalEndcap": "ScHcalBarrel": "ScHCalECRing":

Processes to Fluxes

Histograms Types (1,000,000 muon events)

incentaBioludas@im2a@fir.in2p3.fr

Calorimeter FOakersinh Ateleterators for Fach Rings factore land ble 1/204d: ILD 15/01/2024

Segmentation by "Logical Geometry" C:M:S:T:L:I:J

Useful segmentation & grouping:

- Physics: Group of uniform (rates) regions ($\sim \cos\theta$)

- **Useless individuation:**
 - (Individual layers)
- Technical: Readout & Cooling Partition (ASIC, SLAB, Tower, Module)
 Vincent.Boudry@in2p3.fr
 Calorimeter Fluxes | FCC Physics week, 30/01/24
 8/27

Geometric Selections (Explicit)

All the staves are symmetric (φ , azimuthal symmetry) Radial behaviour can be obtained from different layers (central image). Polar behaviour (cos θ): from Modules in Barrel, from Towers in EndCaps. Selections are in Barrel : 5 Modules × 3 block of 10 layers

Vincent.Boudry@in2p3.fr

Logical Geometry : towers & staves

x:y:T {C==30 && log10(E)<-6}

Software package

Python code

Production of Primary histograms

- LcioReader from pyLCIO
- Mapping & Selection
 - Cell_id decoding [J. Kunath]
 - Highly configurable
- ROOT histograms
 - System and histogram type hierarchy
 - Auto-rescalable (high E, high Nhits)

Secondary histograms

 Scaling : e.g. power, data size = f (#hits, Energy)

2D histograms

 Fix one component and get its 1D histograms as bins of a single 2D histogram.

system_limits = {"ECALBarrel" : (8, 5, 5, 30) , "EndCaps" : (4, "0-6", 5, 30)}

#selection format "S:M:T:L" conditions => "*:*:2:0-4,5-10" means no selection on M, S, 1 histo per 2 tower , 1 for layer 0 to 5, and one for 1
#The keys of the dictionary are the system names. Each key has a value composed of 4 lists.
The first list has the collections' names.
The second one has the selections we impose on the histograms made in the order given above.
The third list has 4 lists each with 2 arguments. Each list has the bin number (the first argument) and the maximum of the range of the hist
The fourth list has the energy threshold that we use in the Nhits histogram.
dictionary_of_system = {
 # System Xollwctiona Stave Modules Towers Layers
 "SiECalEndcap": (["ECalEndcapSiHitsEven", "ECalEndcapSiHits0dd"], [["*"],["*"], [

ary_ot_system = N			
System Xollwctiona	Stave MOdules	Towers	Laye
"SiECalEndcap": (["ECalEndcapSiHitsEven", "ECalEndcapSiHitsOdd"],	[["*"],["*"],	["0","1:2","3:5","6:8"],	["0:9
"SiECALBarrel": (["ECalBarrelSiHitsEven", "ECalBarrelSiHitsOdd"],	[["*"],["1","2","3","4","5"],	["*"],	["0:9
"SiECalRing": (["EcalEndcapRingCollection"],	[["*"],["*"],	["*"],	["0:
"ScECalEndcap": (["ECalEndcapScHitsEven", "ECalEndcapScHitsOdd"],	[["*"],["*"],	["0","1:2","3:5","6:8"],	["0:
"ScECALBarrel": (["ECalBarrelScHitsEven", "ECalBarrelScHitsOdd"],	[["*"],["1","2","3","4","5"],	["*"],	["0:
"RPCHCalEndcap": (["HCalEndcapRPCHits"],	[["*"],["*"],	["0:3","4:7","8:11","12:15"],	["0:
"RPCHCalBarrel": (["HCalBarrelRPCHits"],	[["*"],["*"],	["*"],	["0:
<pre>"RPCHCalECRing": (["EcalEndcapRingCollection"],</pre>	[["*"],["*"],	["*"],	["*"]
"ScHCalEndcap": (["HcalEndcapsCollection"],	[["*"],["*"],	["0:3","4:7","8:11","12:15"],	["0:
"ScHcalBarrel": (["HcalBarrelRegCollection"],	[["*"],["*"],	["*"],	["0:
"ScHCalECRing": (["EcalEndcapRingCollection"],	[["*"],["*"],	["*"],	["*"]

highE	bin/ma	ıx #hi	its bir	/max EThr	Split Func:ranges
100,	0.03],	[100,	35]],	[[0.0001]],	<pre>{}),</pre>
100,	0.03],	[100,	35]],	[[0.0001]],	<pre>{}),</pre>
100,	0.03],	[100,	35]],	[[0.0001]],	<pre>{}),</pre>
100,	0.03],	[100,	35]],	[[0.0003]],	<pre>{}),</pre>
100,	0.03],	[100,	35]],	[[0.0002]],	<pre>{}),</pre>
100,	3e-5],	[100,	35]],	[[3e-7]], {	}),
100,	3e-5],	[100,	35]],	[[3e-7]], {	complex_sad:["0:79", "80:159", "160:234"]]
100,	0.03],	[100,	35]],	[[0.0001]],	<pre>{}),</pre>
100,	0.03],	[100,	35]],	[[0.0001]],	<pre>{}),</pre>
100,	0.03],	[100,	35]],	[[0.0003]],	<pre>{complex_happy:["0:29", "30:59", "60:76"]</pre>
100,	0.03],	[100,	35]],	[[0.0001]],	<pre>{})</pre>

Geometric Selections (1D histograms : 1M muons events)

Vincent.Boudry@in2p3.fr

Geometric Selections (2D histograms)

Vincent.Boudry@in2p3.fr

Logical Geometry (HCAL BARRELS)

Calorimeter Fluxes | FCC Physics week, 30/01/24

Vincent.Boudry@in2p3.fr

1D Vs. 2D Histograms (implicit selections)

 $2J(M-1.5)+38 = \{x: x \text{ is integer, } 0\}$

System low energy & #hit responses raw energies (no digitization)

Selected modes

P	ro	cesses:	min.

- -AII
 - ee \rightarrow qq
 - ee $\rightarrow \mu\mu$, $\tau\tau$
 - $ee \rightarrow ee$ ٠ $(\supset Bhabha)$
 - $\gamma \gamma \rightarrow VV$
 - Machine background (ee pairs)
- $E_{CM} \ge 160 \text{ GeV}$
 - ee → WW
- (E_{CM} \geq 240 GeV)
 - ee \rightarrow HZ

• ee \rightarrow tt

- (E_{CM} \geq 360 GeV)

Config	#IP	E_{Beam}	#BX	£[10³⁴/cm²/s]	ΔT [µs]	Freq[Hz]	√s [GeV]
FCC-Z2	2	45,6	12000	180,0	0,025		91,2
FCC-Z4	4	45,6	15880	140,0	0,019		91,2
FCC-W	4	81,3	688	21,4	0,442		162,5
FCC-ZH	4	120,0	260	6,9	1,169		240,0
FCC-tt	4	182,5	40	1,2	7,600		<u>365,0</u>
ILC250 [1]	1	125,0	1312	1,4	0,554	5,0	250,0
ILC500	1	250,0	1312	1,8	0,554	5,0	500,0
ILC1000	1	500,0	2450	4,9	0,366	5,0	1000,0
CLIC380	1	160,0				10,0	380,0
ILC-GZ	1	45,6				5,0	91,2
ILC250-HL	1	125,0	2625	2,7	0,366	5,0	250,0
CEPC							

ILC from: P. Bambade et al., The International Linear Collider: A Global Project, arXiv:1903.01629 [Hep-Ex, Physics:Hep-Ph, Physics:Physics]. (2019). FCC from: Tor Raubenheimer, FCC Week June 2023

Vincent.Boudry@in2p3.fr

Calorimeter Fluxes | FCC Physics week, 30/01/24

C³

;

Generated data

Table 1: $91.2 GeV$	
$(N = 10000, L_{ins} = 1.4 \times 10^{-3} f b^{-1})$	$s^{-1})$

Channels	σ	$\left(\frac{\sigma \times L_{int}}{N}\right)$
	$(10^{5} fb)$	(s^{-1})
$ee \rightarrow qq$	344	4.82
$ee \rightarrow ll$	34.6	0.484
$ee \rightarrow ee$		
$(M_{ee} < 30 GeV)$	1.01	0.0141
$ee \rightarrow ee$		
$(M_{ee} > 30 GeV)$	57.8	0.809

Table 3: 240 GeV ($N = 10000, L_{\text{ins}} = 6.9 \times 10^{-5} \,\text{fb}^{-1} \,\text{s}^{-1}$)

Channels	σ (10^5fb)	$rac{\left(rac{\sigma imes L_{ ext{int}}}{N} ight)}{\left(ext{s}^{-1} ight)}$
$ee \rightarrow qq$	0.550	3.80×10^{-4}
$ee \rightarrow ll$	0.100	$6.88 imes 10^{-5}$
$ee \rightarrow WW$	0.167	1.15×10^{-4}
$ee \rightarrow ZH$	0.00204	1.41×10^{-6}
$ee \rightarrow ee$ ($M_{ee} < 30 GeV$)	0.120	8.29×10^{-5}
$ee \rightarrow ee$		
$(M_{ee} > 30 GeV)$	5.92	$4.09 imes 10^{-3}$

Table 2: 162.5 GeV ($N = 10000, L_{ins} = 2.14 \times 10^{-4} f b^{-1} s^{-1}$)

Channels	σ	$\left(\frac{\sigma \times L_{int}}{N}\right)$
	$(10^{5} fb)$	(s^{-1})
$ee \rightarrow qq$	1.55	3.32×10^{-3}
$ee \rightarrow ll$	0.241	$5.16 imes10^{-4}$
$ee \rightarrow WW$	0.0504	1.08×10^{-4}
$ee \rightarrow ee$		
$(M_{ee} < 30 GeV)$	0.240	$5.14 imes 10^{-4}$
$ee \rightarrow ee$		
$(M_{ee} > 30 GeV)$	12.9	2.76×10^{-2}

Table 4: $365 \, GeV$ (N = 10000, $L_{ins} = 1.2 \times 10^{-5} f b^{-1} s^{-1}$)

Channels	$\frac{\sigma}{(10^5 fb)}$	$\frac{\left(\frac{\sigma \times L_{int}}{N}\right)}{\left(s^{-1}\right)}$
	() /	
$ee \rightarrow qq$	0.228	2.74×10^{-5}
$ee \rightarrow ll$	0.0430	$5.16 imes10^{-6}$
$ee \rightarrow WW$	0.111	$1.33 imes 10^{-5}$
$ee \rightarrow ZH$	0.00123	$1.47 imes 10^{-7}$
$ee \rightarrow tt$	0.00372	4.46×10^{-7}
$ee \rightarrow ee$		
$(M_{ee} < 30 GeV)$	0.0499	5.99×10^{-2}
$ee \rightarrow ee$		
$(M_{ee} > 30 GeV)$	2.57	3.08×10^{-4}

Machine background sources :

Source	#particles per bunch	$< \mathrm{E} > (GeV)$
Disrupted primary beam	2×10^{10}	244
Bremstrahlung photons	2.5×10^{10}	244
e ⁺ e ⁻ pairs from beam-beam inter- actions	75k	2.5
Radiative Bhabhas	320k	195
$\gamma \gamma \rightarrow hadrons/muons$	0.5 events/1.3 events	-

T. Behnke, et al.

The International Linear Collider Technical Design Report - Volume 4: Dete arXiv:1306.6329 [Physics]. (2013)

Incoherent pair production : 100 BX at FCC-ee 91.2 GeV and 240 GeV

Produced by Andrea Ciarma,

Simulated (special) in ILD's by D. Jeans

Vincent.Boudry@in2p3.fr

Results : Silicon ECAL Barrel, Central Module vs depth

3E+6 hits/s

19E+6 B/s

3767273

1,7E-08

2500 hits/event

Distributions of the number of hits crossing (MIP/4) energy threshold of all the physics processes and machine background at 91.2 GeV (FCC-Z4) The z scale is the number of event/s

- Most of the hits are in the first 2 thirds of the calorimeter.
- Highest average rates L0:9
- Highest max rates in L10:19

From the $\langle f_{\text{Nhits}} \rangle$ in one region one can extract :

- The data rate, knowing the number of bytes per hits (here 6 as a landmark)
- The occupancy, knowing the number of cell in the region.

Note 1 :	Very	preliminary
----------	------	-------------

Note 2 : Rates for all M3 modules \rightarrow /8 per module, /10 per layer

18E+6 hits/s

106E+6 B/s

4 0 2 6 7 6 4

8.8E-08

5.5

2000 hits/event

Vincent.Boudry@in2p3.fr

Average

for 6B/hits

Occupancy/BX

Max

Ncells

cell size

Calorimeter Fluxes | FCC Physics week, 30/01/24

2E+6 hits/s

10E+6 B/s

3 3 7 8 0 3 6

1,0E-08

1000 hits/event

Results : Silicon ECAL E per module, first 10 lay

SiECALBarrel low_#Nhits Layers 0:9

Calorimeter Fluxes | FCC Physics week, 30/01/24

Modules:1

Modules:2

Modules:3

Modules:4

Modules:5

Results: Scintillator HCAL Endcap

Average	14E+6 hits/s	18E+6 hits/s	23E+6 hits/s
MaxNhits	1000 Nhits/event	600 Nhits/event	400 Nhits/event
for 6B/hits	86E+6 B/s	109E+6 B/s	139E+6 B/s
Est. Ncells	278 756	278 756	278 756
Occupancy/BX	1,0E-06	1,3E-06	1,7E-06
cell size	30		

Note 1 : Very preliminary

Note 2 : Rates for all tower 4:7 modules \rightarrow /4 per module, /16 per layer

Distributions of the number of hits crossing (MIP/4) energy threshold of all the physics processes and machine background at 91.2 GeV (FCC-Z4) with the color bar representing the rate of events

855E+3 hits/s	1E+6 hits/s
400 Nhits/event	400 Nhits/event
5E+6 B/s	9E+6 B/s
?	278 756
?	1,0E-07

- Max of the hits rate are in the first 2 thirds of the calorimeter, but in average more in the back (!)
- Significant angular dependence.
- The central towers have most of the hits due to the closeness to the beam pipe.

Results: Dynamic Range in SiECAL EndCa Tower 0 vs depth

Upper Scale Energy distributions of tower 0 of ECAL end cap at **91.2 GeV** of all physics and background

- Max Energy = ~800 MIP
- Tower 0 is the closest to the beampipe
- Almost the same for both energies.

Upper Scale Energy distributions of tower 0 of ECAL end cap at **240 GeV** of all physics and background

Results: Dynamic range HCAL EndCaps for RPC and Scint

Conclusion

Done

Simulation:

- Simulated detector-level data for main physics processes

and machine background at 91.2 GeV and 240 GeV.

- Simulated detector-level data for all physics processes but not machine background at 162.5 GeV and 365 GeV.

Histograms:

- Generated primary, secondary 1D and 2D histograms in 11 systems of ECAL and HCAL of the ILD calorimeters
- Merged different processes and background and got collective histograms.

Conclusions:

- Checked the statistics vs angular distribution
- Give very preliminary estimates of the average number of hits (occupancy and data rates) and the dynamic range.

To be done

Simulation:

- Simulate machine background at 162.5 GeV and 365 GeV and more statistics at 91.2 GeV and 240 GeV
- Check for $\gamma\gamma \rightarrow VV$ contributions

Results:

- Consolidate results from primary generator distributions

Extension:

Extend a similar work to the trackers ?
 Needs logical coordinates Electronics partition

Expansion:

- Expand the work by applying it to other detectors rather than the ILD.
- Code:
 - Adapt to key4hep framework by changing LCIO to EDM4HEP

Vincent.Boudry@in2p3.fr

Extras

ee Higgs factories: configs & backgrounds

Running mode	Z W Z		\mathbf{ZH}	$t\bar{t}$	
Number of IPs	2	4	4	4	4
Beam energy (GeV)	45	5.6	80	120	182.5
Bunches/beam	12000	15880	688	260	40
Beam current [mA]	1270	1270	134	26.7	4.94
Luminosity/IP $[10^{34} \text{ cm}^{-2} \text{ s}^{-1}]$	180	140	21.4	6.9	1.2
Energy loss / turn [GeV]	0.039	0.039	0.37	1.89	10.1
Synchr. Rad. Power [MW]			100		
RF Voltage 400/800 MHz [GV]	0.08/0	0.08/0	1.0/0	2.1/0	2.1/9.4
Rms bunch length (SR) [mm]	5.60	5.60	3.55	2.50	1.67
Rms bunch length $(+BS)$ [mm]	13.1	12.7	7.02	4.45	2.54
Rms hor. emittance $\varepsilon_{x,y}$ [nm]	0.71	0.71	2.16	0.67	1.55
Rms vert. emittance $\varepsilon_{x,y}$ [pm]	1.42	1.42	4.32	1.34	3.10
Longit. damping time [turns]	1158	1158	215	64	18
Horizontal IP beta β_x^* [mm]	110	110	200	300	1000
Vertical IP beta β_{y}^{*} [mm]	0.7	0.7	1.0	1.0	1.6
Beam lifetime (q+BS+lattice) [min.]	50	250		$<\!28$	<70
Beam lifetime (lum.) [min.]	35	22	16	10	13

P. Bambade et al., The International Linear Collider: A Global Project, arXiv:1903.01629 [Hep-Ex, Physics:Hep-Ph, Physics:Physics]. (2019).

Quantity	Symbol	Unit	Initial	\mathcal{L} Upgrade	TDR	Upgr	ades
Centre of mass energy	\sqrt{s}	GeV	250	250	250	500	1000
Luminosity	$\mathcal{L} = 10^{34}$	${\rm cm}^{-2}{\rm s}^{-1}$	1.35	2.7	0.82	1.8/3.6	4.9
Polarisation for $e^{-}(e^{+})$	$P_{-}(P_{+})$		80%(30%)	80%(30%)	80%(30%)	80%(30%)	80%(20%)
Repetition frequency	$f_{\rm rep}$	Hz	5	5	5	5	4
Bunches per pulse	$n_{\rm bunch}$	1	1312	2625	1312	1312/2625	2450
Bunch population	$N_{ m e}$	10^{10}	2	2	2	2	1.74
Linac bunch interval	$\Delta t_{\rm b}$	\mathbf{ns}	554	366	554	554/366	366
Beam current in pulse	I_{pulse}	$\mathbf{m}\mathbf{A}$	5.8	5.8	8.8	5.8	7.6
Beam pulse duration	$t_{\rm pulse}$	$\mu { m s}$	727	961	727	727/961	897
Average beam power	$P_{\rm ave}$	MW	5.3	10.5	10.5	10.5/21	27.2
Norm. hor. emitt. at IP	$\gamma \epsilon_{\mathbf{x}}$	$\mu { m m}$	5	5	10	10	10
Norm. vert. emitt. at IP	$\gamma \epsilon_{\rm y}$	nm	35	35	35	35	30
RMS hor. beam size at IP	σ^*_{x}	nm	516	516	729	474	335
RMS vert. beam size at IP	$\sigma^*_{ m v}$	nm	7.7	7.7	7.7	5.9	2.7
Luminosity in top 1%	$\mathcal{L}_{0.01}/\mathcal{L}$		73%	73%	87.1%	58.3%	44.5%
Energy loss from beamstrahlung	δ_{BS}		2.6%	2.6%	0.97%	4.5%	10.5%
Site AC power	$P_{\rm site}$	MW	129		122	163	300
Site length	$L_{\rm site}$	\mathbf{km}	20.5	20.5	31	31	40

Tor Raubenheimer, FCC Week June 2023

TABLE I: Summary table of the ILC accelerator parameters in the initial 250 GeV staged configuration (with TDR parameters at 250 GeV given for comparison) and possible upgrades. A 500 GeV machine could also be operated at 250 GeV with 10 Hz repetition rate, bringing the maximum luminosity to $5.4 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ [10].

Summary of Backgrounds

The background sources have been investigated in various studies. For example, the beam-beam interaction and pair generation, radiative Bhabhas, disrupted beams and beamstrahlung photons for the 500 GeV ILC were studied with GUINEAPIG [333]. Also, the $\gamma\gamma$ hadronic cross section was approximated in the Peskin-Barklow scheme [2]. Based on these studies densities of particles which will reach the different sun-detectors have been estimated. Table I-1.3 summarises these estimates.

Table I-1.3

Background sources for the nominal 500 GeV beam parameters.

Source	#particles per bunch	< E > (GeV)	
Disrupted primary beam	2×10^{10}	244	
Bremstrahlung photons	2.5×10^{10}	244	
e ⁺ e ⁻ pairs from beam-beam inter- actions	75k	2.5	
Radiative Bhabhas	320k	195	
$\gamma \gamma \rightarrow hadrons/muons$	0.5 events/1.3 events	-	

T. Behnke, et al.

The International Linear Collider Technical Design Report - Volume 4: Detect arXiv:1306.6329 [Physics]. (2013)

eek, 30/01/24

Machine backgrounds

Files produced by Andrea Carma at Z peak and Top threshold.

Incoherent Pairs Creation (IPC) output files from GuineaPig++ for FCC-ee 4IP lattice nominal beam energy: 45.6GeV @Z - 182.5GeV @Top

Each file corresponds to pairs created during 1BX each line corresponds to a particle

The format of the line is:

Charge and PID should be manually set, according to the sign of the energy

PHEP4>0 -> IDHEP = 11; CHARGE =-1; PHEP4<0 -> IDHEP =-11; CHARGE = 1;

A Lorentz boost should be applied along X to account for the fact that GP produces particles in the rest frame of the two beams, which due to the crossing angle (15 mrad) moves w.r.t. the detector.