

EU Project MuCol Status and Plans

R. Losito CERN

Funded by the European Union (EU). Views and opinions expressed are however those of the author only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.

MuCol Organisation

EU Design Study Work Programme

Workpackage leaders: WP 1: R. Losito (CERN) WP 2: D. Lucchesi (INFN, Padua) WP 3: N. Milas (ESS) WP 4: Ch. Rogers (RAL) WP 5: A. Chance (CEA) WP 6: C. Marchand (CEA) WP 7: L. Bottura (CERN) WP 8: L. Rossi (U. Milano)

Study Leader: D. Schulte (CERN) Deputy Study Leader: Ch. Rogers (RAL) Technical Coordinator: R. Losito (CERN) Gender Advisor: E.J. Bahng (ISU) Publications: E. Metral

Includes an important part of the work directly and much indirectly

Scientific and technical organization of the project

EU Design Study

Kick-off meeting in March 2023: https://indico.cern.ch/event/1219912

MuCol

Joint Annual Meeting with IMCC with the participation of the EU Project Officer **Angela Lahuerta Marin**

https://indico.cern.ch/event/1250075/

Many thanks to all that contributed

https://mucol.web.cern.ch

MuCol Timeline

Finish February 2027

Preliminary report by early 2026 as an input to EU strategy process Consolidated report available before the end of EUSPP

Iterating on parameters and design each year

Specific meetings

- Training on Detector Design and physics performance tools
 - https://indico.cern.ch/event/1277924/
- Review of the Magnet programme
 - Took place during the Annual meeting in Paris
 - Draft report presented to the Muon Magnet Working group, soon to be published in final form
 - <u>https://indico.cern.ch/event/1313015/</u>

- Good progress on all WPs
- Some examples in spare slides..
- Regular WP meetings
- In general, enthusiastic participation

Milestones & Deliverables

- Deliverables for year 1:
 - Data Management Plan, M5 (M8): WP1 (CERN) + all
 - Draft now ready, being "cleaned up", will be sent to the board for endorsement
 - Preliminary ESPPU report No. 1 M12: WP1 (CERN) + all
 - Approval of the first report will provide the green light to CERN's administration to proceed with the second payment (about 15% of total).

Milestones & Deliverables

Milestones for year 1:

- ✓ Website online, M2: WP1 (CERN)
- ✓ *Kick-off meeting*, by M3: M2
- Training on detector design and physics performance tools, M6, WP2
- Tentative Parameters available, M6 (M8): WP1 (SL) + all

	Milestone No	Milestone Name	Work Package No	Lead Beneficiary	Means of Verification	Due Date (month)
	1	Website Available	WP1	1 -CERN	Website online	2
	2	Kick-off meeting	WP1	1-CERN	Indico site	3
Intor	3	Tentative parameters available	WP1	1-CERN	Database	8
UON (4	First annual meeting	WP1	1 -CERN	Indico site	15
ollabc	5	Preliminary parameters	WP1	1-CERN	Database	20
	6	Second annual meeting	WP1	1-CERN	Indico site	27
	7	Consolidated parameters	WP1	1-CERN	Database	32
	8	Third annual meeting	WP1	1-CERN	Indico site	39
	9	Training on detector design and physics performance tools	WP2	8-UNIPD	Training material	6
	10	Workshop on MDI and IR design	WP2, WP5	8-UNIPD	Indico site	13
	11	Release of simplified detector performance model (DELPHES card or/and similar format)	WP2	8-UNIPD	Model published on the website	20
	12	Workshop on detector design and physics performance with a public lecture on Muon Collider	WP2	8-UNIPD	Indico site	25
	13	Publication of report of detector performance with major physics process at several ECM	WP2	8-UNIPD	Article ready for submission	48
	14	Mini-Workshop on pulsed magnets	WP7, WP5	5-CEA	Indico site	15
	15	Tentative design of the interaction region	WP2, WP5	1-CERN	Optics files	20
	16	Tentative optics of the collider ring and pulsed synchrotrons	WP5	5-CEA	Optics files	19
	17	Tentative design of the FFA	WP5	5-CEA	Optics files	25
	18	Tentative impedance budget in the collider and pulsed synchrotron	WP5	5-CEA	Dataset	26
	19	Workshop on ultra-high-field solenoids	WP7	1 -CERN	Indico site	32
	20	Workshop on high-field collider magnets	WP7, WP5	1-CERN	Indico site	44
	21	Cooling cell design 3D model	WP8	7-UMIL	3D model completed & Report	33

	Work			
Deliverable Name	Package	Lead Beneficiary	Ґрс	Date
	No			
			DMP — Data	
Data-management plan	WPI	1 -CERN	Management Plan	8
Preliminary ESPPU report No. 1	WPI	1 - CERN	R — Document, report	12
Preliminary ESPPU report No. 2	WPI	1 -CERN	R — Document, report	24
Intermediate ESPPU report	WPI	- CERN	R — Document, report	36
Consolidated ESPPU report	WPI	1 - CERN	R — Document, report	48
Beam-induced background and detector configuration	WP2	8 - UNIPD	DATA — data sets, microdata, et	32
Detector performance by using physics processes	WP2	2 - DESY	R — Document, report	36
Final report on parameters and initial study for the Proton Complex	WP3	11 -ESS	R — Document, report	45
Development of BDSIM simulation	WP4	16 -UKRI	OTHER	24
Preliminary Report on key subsystems for ESPPU input	WP4	16 -UKRI	R — Document, report	33
Consolidated Report on key subsystems	WP4	16 -UKRI	R — Document, report	45
Report on the collider ring design	WP5	5 - CEA	R — Document, report	44
Report on the design of the HEC	WP5	5 - CEA	R — Document, report	45
Report on design of high power and high efficiency RF power sources	WP6	5 - CEA	R — Document, report	44
Report on RF for MCC and HEC	WP6	5 - CEA	R — Document, report	45
Preliminary report on muon collider magnets	WP7	1 - CERN	R — Document, report	33
Consolidated report on muon collider magnets	WP7	1 - CERN	R — Document, report	45
Presentation of cooling cell conceptual design	WP8	7 - UMIL	OTHER	15
Final report on cooling cell design	WP8	7 - UMIL	R — Document, report	44
R. Losito MuCol Status, Mucol Gove	erning Boai	rd, Sept. 2023		

MuCol Status, Mucol Governing Board, Sept. 2023

• Positions are publicised in the mucol website

MuCol - A Design Study for a Muon Collider complex at 10 TeV center of mass

Muon colliders can reach centre-of-mass energies of tens of TeV with high luminosity, and they also allow accurate tests of the Standard Model at extremely high energy, offering opportunities to detect new physics indirectly and to confirm and to characterise direct discoveries. However, a number of technical challenges must be overcome in order to realise a muon collider.

The EU has supported the MuCol programme to address the core of these key challenges. MuCol will develop the collider concept

JOBS

Job title	Institute	Info	Status
Postdoctoral researcher in Accelerator Physics	ESS	Postdoctoral Position	OPEN
PhD on Design of pulsed synchrotrons for the high- energy acceleration chain for a muon collider	CEA	Proposal PhD Subject	OPEN
Postdoctoral in Saclay and Trieste	CEA / INFN	Postdoctoral Position	OPEN
PhD Student for High Intensity Beam Dynamics Project	ESS	https://europeanspallationsource.se/careers/vacanci es?rmpage=job&rmjob=1516&rmlang=UK	FILLED

17

SPARE SLIDES

D. Schulte Muon Collider Status, Annual Meeting, Orsay, June 2023

Strategy Toward 10 TeV Detector

Strategy:

- Definition of the working hypothesis
 - BIB at the same level, it is dominated by the nozzle
- Definition of detector requirements
 - Use experience gained on 1.5/3 TeV
- Use two physics cases to study physics objects characteristics:
 - Higgs decay channels @ 10 TeV
 - Heavy Z' produce via vector bosons fusions

L. Buonincontri IMCC October 2022

D. Schulte Muon Collider Status, Annual Meeting, Orsay, June 2023

Machine-detector Interface

- Study the **beam-induced background (BIB)** and identify mitigation strategies.
- Achieve a conceptual interaction region (IR) design compatible with detector operations
- Address different centre-of-mass energies, with particular focus on Vs = 3 TeV and Vs = 10 TeV
- FLUKA studies with various lattice configurations:
 - A dipole component mitigates only slightly the BIB
 - Nozzle is the determinant component for the BIB. As starting point, the 1.5 TeV MAP design (N. Mokhov) was taken
- Similar BIB multiplicity for all collider energies
- Simulation with the latest 10 TeV optics (K. Skoufaris et al.) and nozzle optimization currently ongoing

Proton Complex

N. Milas et al.

- Review of linac parameters is ongoing.
 - High intensity machine development through LINAC4 : high intensity beam (35mA peak) has reached the end of the linac and it has been successfully injected in the PSB
- We have a baseline lattice for accumulator compressor
 - Based on the lattice for the neutrino factory) for the 5 GeV case.
- Work ongoing on limitations to accommodate the 2MW beam at 5 Hz
- PhD student at ESS for accumulator/compressor selected, will start in August.
- Hiring postdoc (ESS/Uppsala) is in the process.
- Discussions about possible machine development at the CERN injector complex to verify ideas/simulations for the accumulator/compressor are ongoing.

D. Schulte

Muon Cooling

Building on MAP design

- Optimising baseline cooling channel
- Examining alternative arrangements
 - e.g. High pressure gas in RF cavities

Ch. Rogers, Zhu Ruihu et al.

A. Latina, E. Fol, B. Stechauner at al.

Code development: Integrating multiple scattering in **RFTRACK**, code maintained at CERN, including collective effects

	ϵ_{\perp} (mm)	ε _{ll} (mm)	ε _{6D} (mm³)	T(%)
initial	5.13	9.91	260	
Stage 1	2.92	8.16	71.6	87.1
Stage 2	1.99	5.97	24	91.2
Stage 3	1.47	3.16	7.12	88
Stage 4	1.08	2.52	3.11	92.2
Stage 5	0.712	2.14	1.14	89.2

Final Cooling 1:

Determine optimum cooling energy based on emittances B. Stechauner et al.

Muon Cooling

er

) n

MuCol Fin

Final cooling design

Simplified RF, 40 T solenoids, 4 MeV after last window

Cooling technology

Started considering absorber for final cooling

- Muon beam is dense, have to consider heating
- Can limit pressure rise limited with gas density
 - Leads to acceptable absorber lengths
- Windows are under investigation
 - Plan experiments at HiRadMat

B. Stechauner, J. Ferreira et al.

RCS Design

• Detailed parameter table (by F. Batsch): https://cernbox.cern.ch/index.php/s/I9VpITncUe CBtiz

- Parameters of the 4th RCS under study.
- Several proceedings at IPAC'23:
 - "Parameter Ranges For A Chain Of Rapid Cycling Synchrotrons For A Muon Collider Complex"
 - "Longitudinal beam dynamics and RF requirements for a chain of muon RCSs"
 - "Transverse impedance and beam stability studies for the Muon collider Rapid Cycling Synchrotrons"
- Next steps:
 - To refine the parameters tables.
 - To improve the lattice generator to get a full optics of the RCS (integration of the RF cavities).

Collective effects and shielding not included

D. Schulte

A. Chance,	F. Batsch et al.	Example paran	neters for	the muon l	RCSs	MInternationa UON Collide
			RCS1	RCS2	RCS3	RCS4
The state	Hybrid RCS		No	Yes	Yes	Yes
blincue	Circumference	[m]	5990	5990	10700	26659
	Injection/extr. e	energy [TeV]	0.06/0.30	0.30/0.75	0.75/1.5	1.5/4.2
	Survival rate [9	%]	90	90	90	90
	Acceleration tin	ne [ms]	0.34	1.10	2.37	5.75
	Number of turn	S	17	55	66	65
ts for a	Energy gain/tur	m [GeV]	14.8	7.9	11.4	41.5
s for the	NC dipole field	[T]	0.36/1.8	-1.8/1.8	-1.8/1.8	-1.8/1.8
	SC dipole field	[T]	-	10	10	16
	NC/SC dipole l	ength [m]	2.6/-	4.9/1.1	4.9/1.3	8.0/1.3
	Number of arcs	5	34	26	26	26
cs of the	Number of cells	s/arc	7	10	17	19
	Cell length [m]		21.4	19.6	20.6	45.9
	Path length diff	. [mm]	0	9.1	2.7	9.4
	Orbit difference	e [mm]	0	12.2	5.9	13.2
\langle	Min. dipole wid	th [mm]	17.4	19.6	10.7	18.8
	Min. dipole heid	aht [mm]	14.8	6.4	4.2	4.4

Muon Collider Status, Annual Meeting, Orsay, June 2023

RF Progress

F. Batsch, H. Damerau, A: Grudiev, U. van Rienen et al.

Longitudinal emittance target value (norm.):

• $\sigma_z \cdot \sigma_E = 7.5 \text{ MeVm} \triangleq 0.025 \text{ eVs} \rightarrow 4\pi \cdot \sigma_t \cdot \sigma_E = 0.31 \text{ eVs}$ for ellipse 30 MV/m as baseline and demonstrated, 45 MV/m as optimistic option Emittance blow-up from final cooling to IP budgeted with 10% \rightarrow challenge assuming 3% to 4% per RCS and beam transfers

- Around 30 RF stations needed for longitudinal stability and focusing
- Changes in orbit length require frequency tuning required (A. Chancé)
- Single-bunch HOM power loss up to 10 kW averaged over the acceleration time
- CW average is lower, development of high-capacity couplers needed

D: Schulte

Muon Collider Status, Annual Meeting, Orsay, June 2023.

RCS:

Collective Effects

D. Amorim, E. Metral, X. Buffat

- Assuming O(700) TESLA type RF cavities
- Impact of initial transverse offset for single beam
- Two beam under investigation

Collider ring

- Single beam instability limits
 - Conservative feedback
- Copper coating beneficial (few microns)
- Minimum radius from impedance:
 - 14mm with copper coating
 - 19mm for direct tungsten

Collider Ring Lattice

p_γ [σ]

Important progress:

- V0.4 (last annual meeting) almost no dynamic aperture for on-energy particles
 - Very challenging lattice design and becomes harder at higher energies
- V0.6 good dynamic aperture at almost 0.1% offenergy
 - Approaching the target

K. Skoufaris, Ch. Carli, support from P. Raimondi, K. Oide, R. Tomas

Started definition of cross section

- Lattice
- Impedance
- Shielding
- Cooling
- Vacuum
- Magnets

	thickness	outer
Beam aperture	23.49	23.49
Copper coating	0.01	23.5
Tungsten shield	40	63.5
Support/ins.	11	74.5
Cold bore	3	77.5
Kapton	0.5	78
Clearance	1	79

Important progress on **cooling** Different cooling scenarios being followed

Tungsten shield cooled close to room temperature CO₂ (preferred) or water (to be verified)
Support of shield is important for heat transfer
Discussion on options for magnet cooling

R. Van Weelderen, P. De Sousa

Collider Ring Technology

K. Skoufaris, Ch. Carli, D. Amorim, A. Lechner, R. Van Weelderen, P. De Sousa, L. Bottura et al.

Target solenoid Operating field: 20 T Operating temperature: 20 K

A Portone, P. Testoni, J. Lorenzo Gomez, F4E

Solenoids

Final Cooling solenoid

$$\mathbf{B}_{\max} = \mathbf{2} \cdot \sqrt{\sigma_{\max} \cdot \boldsymbol{\mu}_0}$$

$$\sigma_{max}$$
 = 600 MPa

A. Dudarev, B. Bordini, T. Mulder, S. Fabbri

M. Takayasu et al., IEEE TAS, 21 (2011) 2340 Z. S. Hartwig et al., SUST, 33 (2020) 11LT01

NINTERNATIONAL UON Collider Collaboration

35

30

- 25 _H

- 20 - 2

15

10

- 5

0.05 s

0.3

D. Schulte

Muon Collider Status, Annual Meeting, Orsav, June 2023

Fast-ramping Magnets

F. Boattini et al.

5.07 kJ/m

5.65...7.14 kJ/m

Main challenge is management of the power in the resistive dipoles (several tens of GW):

- Minimum stored magnetic energy
- Highly efficient energy storage and recovery

Simple HTS racetrack dipole could match the beam requirements and aperture

Differerent power converter options investigated

RF Test Station Layout

MuCol Module work focuses on RF test stand at this moment

- One of the most urgent actions to ensure timely implementation of R&D programme
- Try to identify infrastructure for this
 - CEA, INFN, Cockroft, CERN, ...
 - Will not be cheap so need to find resources

L. Rossi, C. Marchand, D. Giove, A. Gurdiev, G. Ferrand et al.

Scheme 1: single cryostat

- Two coils to vary magnetic field distribution
- Preliminary design allows down to **700 MHz** system → Ø600 RT free bore for RF → Ø**700 mm** minimum SC coil diameter
- Currently study single cryostat, next split cryostat
- Coils are expensive

First Sketches

Target Studies

MuCol Studying 2 MW target

Stress in target, shielding, vessel and window being studied

• In general very promising, need to have closer look at window

D. Schulte

Integration with magnet is being addressed

A. Lechner, et al.

Cooling of the shield also

Radiation to magnet has been studied

Muon Collider Status, Annual Meeting, Orsay, June 2023

CDR Phase, R&D and Demonstrator Facility

Baseline design

Demonstrator de

Design and mod

Prepara pr

Prot types

and Cost

Estimation

Solenoid Absorber

Facility Conceptual Design

Demonstrator Construction

Models, prototype

Techn cal Design

Pre series

Downstream

Instrumentation

Readylto

Commit

MBr@ad R&D programme required and can be distributed world-wide

- Models and prototypes
 - Magnets, Target, RF systems, Absorbers, ...
- CDR development
- Integrated tests, also with beam

Integrated cooling demonstrator is a key facility

 look for an existing proton beam with significant power

Different sites are being considered

- CERN, FNAL, ESS are being discussed
- J-PARC also interesting as option
- FNAL is considering this in the ACE

Could be used to house physics facility

- Are trying to explore what are good options
 - D. Schulte

Muon Collider Status, Annual Meeting, Orsay, June 2023

opstream instrumentation

High-intensity high-energy pion source

and Matching

Collimation and

phase rotation

C. Rogers, R. Losito, et al.

Technically limited timeline

Cooling

Facility Construction

Production

Deminstrator exploitation and upgrades

Ready to

Construct

Demonstrator Progress

FNAL consideres the demonstrator in the Accelerator Complex Evolution (ACE)

Continue to explore synergies

- Past meeting in Venice
- Synergy workshop after the annual meeting

Design Studies are ongoing

- Studying layout options from target
 - NuSTORM-compatible option
 - TT7-compatible option
- Optimisation of rectilinear cooling system ongoing

Reserve

