ICARUS at the Short-Baseline Neutrino program: first results

Maria Artero Pons Università degli Studi di Padova and INFN Padova On behalf of the ICARUS Collaboration

XIII International Conference on New Frontiers in Physics Kolymbari, 4th September 2024

Intense European Commission

G A 82218

FROROWIND

MAGING

COSMIC

AND

The sterile neutrino puzzle

• Accelerator experiment anomalies: v_e excess in a v_{μ} beam

The sterile neutrino puzzle

Beam Excess Events **MiniBooNE LSND** Other arXiv:2006.16883 arXiv:2302.099 500 rXiv:hep-ex/0104049 7.5 Beam Excess $\Delta m^2 = 7.3 \text{ eV}^2$, $\sin^2(2\theta) = 0.36$, resolution 250 keV 1.4 Dirt O Observed $p(\overline{v}_{\mu} \rightarrow \overline{v}_{e}, e^{\dagger})n$ 15 $\Delta \rightarrow N\gamma$ 400 p(v,e⁺)n ***** misid 12.5 1.2 v from K⁰ N(L, E)/N(L,E)_{average} other 10 v_e from K^{+/-} 300 v_e from $\mu^{+/-}$ 7.5 Best-fit 200 Data 5 0.8 Neutrino-4 2.5 100 $\Delta m^2 = 7.3 \text{ eV}^2$, $\sin^2(2\theta) = 0.36$ 0.6 γ^2/DoF 20.61/17 (1.21) 0 0.24 γ²/DoF 31.90/19 (1.68) Unity 0.03 GoF 200 400 0.4 0.6 0.8 1.2 1.4 600 800 1000 1200 1.5 2.0 1.0 2.5 Visible Energy [MeV] L/E, (meters/MeV) L/E $\sin^2(2\theta)$ $\Delta m^2_{23} \ [eV^2]$ Best fit Oscillation signature at 5.8σ CL New sterile ν flavor LSND 1.20.003 when results are combined with at $\Delta m^2 \sim eV^2$! other experiments 0.043 MiniBooNE 0.807

•

The sterile neutrino puzzle

Tension between appearance and disappearance

results in global constraint plots

Measure both channels with the same experiment

The Short-Baseline Neutrino program is searching for sterile neutrinos at $\sim eV^2$ mass scale

LAr Time Projection Chambers (LArTPC) @ Fermilab sampling the same v beam at different distances

The Short-Baseline Neutrino program

• Shared detector technology, nuclear target and beam to reduce the systematic uncertainties to % level

Commissioning phase

Oscillated neutrino spectrum measurement at the far detector

Taking data

ICARUS beams

• **BNB** is a well characterized v_{μ} -beam, able to produce v and \bar{v} beams with low v_e contamination

ICARUS beams

• **BNB** is a well characterized v_{μ} -beam, able to produce v and \bar{v} beams with low v_e contamination

Sensitive search in the v_{μ} disappearance & v_e appearance channels

ICARUS beams

- BNB is a well characterized v_{μ} -beam, able to produce v and \bar{v} beams with low v_e contamination
- ICARUS is also exposed ~ 6° off-axis to the **NuMI** beam and can access the v_e rich component of the spectrum

Standalone ICARUS physics program

• Before the start of near-far joint operation, ICARUS standalone physics program includes

 v_{μ} disappearance investigation with BNB beam

 v_e disappearance studies leveraging the NuMI beam will follow

 $\nu-Ar\,$ cross section measurements and software optimization of reconstruction & identification tools with NuMI beam

within DUNE's interest energy range

Search for sub-GeV Beyond Standard Model (BSM) signatures

Exploiting off-axis NuMI beam

ICARUS LArTPC

• ICARUS T600 is the first large scale LArTPC

- 2 Identical cryostats with 4 TPCs
- Total active mass 476 ton

- 500 V/cm \vec{E} field, with 1.5 m drift length
- Warm front-end electronics
- 3 readout wire planes per anode at 0 and $\pm 60^\circ$

ICARUS Detector Subsystems

- Time Projection Chambers (TPC)
 - $\,\sim 54k$ channels at different orientations and 3 mm pitch
 - Photon Detection System (PDS)
 - 360 PMTs, TPB coated to detect scintillation light
 - Event timing and triggering purposes
- Cosmic Ray Tagger (CRT)
 - ~ 4π scintillator panels with SiPM readout for cosmic tagging
 - Protected by ~ 2.85 m thick concrete overburden for external γ /n suppression

*ICARUS operates at shallow depth

ICARUS Detector Subsystems

Installation and activation

- September 2020: Start of TPC and PMT operations
- December 2021: CRT installation

- ~ 95% tagging efficiency
- June 2022: Overburden installation

Eur. Phys. J. C 83, 467 (2023)

Physics runs

First physics data taking after overburden completion

Recording events whose scintillation light is detected in coincidence with the proton beam extraction

• At least 5 fired PMT pairs inside a 6 m longitudinal slice

ያፚረ

No beam periods allowed LAr refilling and detector improvement operations

	Collected Protons on Target	BNB + focusing	NuMI + focusing	NuMI - focusing
>97% data collection efficiency	Run-1 (Jun 9^{th} – Jul 10^{th} 22)	$0.41\cdot 10^{20}$	$0.68\cdot10^{20}$	_
	Run-2 (Dec 20^{th} $22 - \mathrm{Jul}$ 14^{th} $23)$	$2.05\cdot10^{20}$	$2.74\cdot 10^{20}$	_
	Run-3 (Mar $15^{\rm th}$ - Jul $12^{\rm th}$ 24)	$1.36\cdot10^{20}$	-	$2.82\cdot10^{20}$
	Total	$3.82\cdot 10^{20}$	$3.42\cdot 10^{20}$	$2.82\cdot 10^{20}$

*+(-) focusing indicates forward (reverse) Horn Current

ICARUS Data taking

• Free electron lifetime stable and adequate for physics runs thanks to the cryogenic and purification systems

Values ~ 7-8 ms allowing an almost full track detection efficiency in the whole 1.5 m drift (~ 1 ms)

*residual impurities in LAr at ~ 40 p.p.t. of $[O_2]$ equivalent

ICARUS Data taking

• Free electron lifetime stable and adequate for physics runs thanks to the cryogenic and purification systems

Detector calibration

- To pursue ICARUS' standalone physics program a full detector calibration is mandatory
- Accurate characterization and modeling of TPC wire signals in MC using cosmic muon data

arXiv:2407.11925

Detector calibration

- Detector response calibration with cosmic muons and protons from neutrino events, essential for PID ٠
 - **Electronics** gain factors -
 - New angular dependent recombination model (EMB) -
 - $R: 1.25 \pm 0.02$ α : 0.904 ± 0.008 $=\frac{\beta_{90}}{\varepsilon\rho\sqrt{\sin^2\phi+\cos^2\phi/R^2}}$ $\log\left(\alpha + \mathcal{B}(\phi)\frac{dE}{dx}\right)$ $\frac{dQ}{dx}$ β_{90} : 0.204 ± 0.008 (kV/MeV)(g/mL) $\mathcal{B}(\phi)W_{\text{ion}}$ 1.175 -20.0 Angular Depositions Preliminary Dependence 1.150 17.5 Muon Columnar ° 1.125 (**φ**) / β(85.2 (**φ**) / β(85.2 1.000 1.075 1.050 Proton Constant 15.0 dE/dx [MeV/cm] Ellipsoid DATA 12.5 +Data 10.0 7.5 ∑ 1.025 Expected MPV dE/dx Preliminary 5.0 1.000 2.5 50 60 70 80 30 40 15 20 10 25 5

Electron lifetime correction

arXiv:2407.12969

*E being the electric field and ρ the Ar density

Residual Range [cm]

Detector validation

• Deposited energy was used to validate the calibration and calorimetric reconstruction

Detector validation

• Visually selected events exploited to evaluate the automatic reconstruction resolution

Detector performance

• Effective rejection of incoming cosmics using their time of flight

Detector performance

- Reconstruction of BNB and NuMI beams bunch structures
 - Rejecting incoming cosmic activity (CRT filter) + ν time of flight correction
 - Using light information only
 - - Charge information expected to improve resolution
 - u event time wrt proton beam extraction time (RWM counters)

More details here

 $\sigma = 2.986 \pm 0.036$ ns

BNB, 2.43e19 POT

BNB

Cosmic

bkg

ICARUS Data

Light Only

2000

su 3 5¹⁵⁰⁰

#

entries / 0.: 000 000

500

Work in Progress

Status of ICARUS physics program

• Before the start of near-far joint operation, ICARUS standalone physics program includes

 v_{μ} disappearance investigation with BNB beam

 v_e disappearance studies leveraging the NuMI beam will follow

Event selection ready and validated

 ν –Ar cross section measurements and software optimization of reconstruction & identification tools with NuMI beam

within DUNE's interest energy range

Selection ready and sidebands studied for a subset of data

Search for sub-GeV Beyond Standard Model (BSM) signatures

Exploiting off-axis NuMI beam

Signal box opened for the $\mu\mu$ decay channel

1, ν_{μ} CC event selection

- Fully contained v_{μ} CC events with 1 muon + N protons are studied
- TPC track associated with PMT light and no CRT signal inside the beam spill window
- A muon ($L_{\mu} > 50 \text{ cm}$)
- At least 1 proton $L_p > 2.3$ cm ($E_k > 50$ MeV)
- Correctly identified by the PID tool (based on dE/dx)
- Fully contained particles
- no additional π or γ 's

1, ν_{μ} CC event selection

- Fully contained v_{μ} CC events with 1 muon + N protons are studied
- TPC track associated with PMT light and no CRT signal inside the beam spill window
- A muon ($L_{\mu} > 50 \text{ cm}$)
- At least 1 proton $L_p > 2.3 \text{ cm} (E_k > 50 \text{ MeV})$
- Correctly identified by the PID tool (based on dE/dx)
- Fully contained particles
- no additional π or γ 's
- Two independent reconstruction approaches:
 - <u>Pandora</u> patter recognition algorithm
 - Machine learning **SPINE**

- Cosmic backgrounds below 1%
- Validation through visual studied ν
- Event kinematic by range measurements

1 ν_{μ} CC event selection - Systematics

• Systematics are evaluated comparing calibrated vs uncalibrated MC samples

- Kinematic variables might help reducing cross section systematics
- Cancellations in the joint SBN analysis:
 - cross section and flux uncertainties
 - common detector systematics
- Simulation improvements ongoing to reduce

Data-MC discrepancies

Flux / cross section / detector ~ 10% / 15% / 15%

1 μ Np selection – first results BNB

• Data-MC agreement in 10% of Run-2 unblinded data

	Pandora	SPINE
Efficiency	50%	75%
Purity	80%	80%
*Total events	s 34 k	47 k

- Next steps:
 - Enlarge control sample
 - Unblind full dataset
 - Single detector oscillation fit

2. Interactions @ ICARUS

• Cross section measurements thanks to NuMI high statistics

332 k ν_{μ} CC and 17 k ν_{e} CC interactions in 6 \cdot 10²⁰ POT

• Available data ~ $3.42 \cdot 10^{20}$ POT

Interactions @ ICARUS

• Cross section measurements thanks to NuMI high statistics

332 k v_{μ} CC and 17 k v_{e} CC interactions in 6 \cdot 10²⁰ POT

- Available data ~ $3.42 \cdot 10^{20}$ POT
- Relevant overlap between ICARUS and DUNE energy spectrum

1 μ Np0 π selection - NuMI

- Targeting $1\mu Np0\pi$ topology
 - Enriched in quasi-elastic and 2p2h interactions
- Signal definition
 - One μ with p_{μ} > 0.226 GeV/c
 - At least one proton with $p_{\mu} \in [0.4, 1] \text{ GeV/c}$
 - no additional π^{\pm} or π^{0}
- Using 15% of Data

Flux, cross section and

detector systematics

02. π^{\pm} control sample

- Major background: undetected or misidentified pions
- Control sample studied requiring two muon-like tracks
- Good agreement between 15% data-MC

02. π^{\pm} control sample

- Major background: undetected or misidentified pions
- Control sample studied requiring two muon-like tracks
- Good agreement between 15% data-MC

Ready to study 100% data sideband

BSM Physics - NuMI

- Rich BSM research program within the off-axis NuMI beam
- Explored models involving dark particles coupling to SM particles through Scalar Portal Interactions
 - Higgs Portal Scalar (HPS) 🔶 Scalar dark sector particles, undergo mixing with Higgs boson
 - Heavy QCD axion (ALP)

Pseudoscalar particles, undergo mixing with pseudoscalar mesons

Phenomenology diagram of HPS at ICARUS

100%

First analysis completed!

Signal: contained di-muon final state topology

HPS and ALP search results

- The Scalar mass $(M_{\mu\mu})$ peak is reconstructed using the two stopping muons
- Signal is expected at small angle to the beam direction $\theta_{NuMI} < 5^{\circ}$
- 8 candidate events were found in all ICARUS Run-2 NuMI data

• HPS and ALP search results

- The result is compatible with **no** new physics signal (0.19 σ)
 - Background: 8 events from v_{μ} CC coherent pion production
- Exclusion contour plots (90% C.L.) and paper in progress

*Full systematic treatment included

More details here

Conclusions

- ICARUS is smoothly running in physics mode since June 2022 ٠
- Detector performance evaluated with cosmic muons and protons from ν ٠
 - Huge effort to calibrate and model detector response 🛹 Papers available in arxiv -
- ICARUS well on the way to first physics results •
 - Single detector v_{μ} disappearance with BNB beam
 - v_{μ} Ar cross-section measurements with NuMI beam
 - Sub-GeV dark matter candidates with NuMI beam -

Looking forward for the SBN joint analysis!


```
Ready to enlarge control samples
```

Completed contained di-muon search

Conclusions

- ICARUS is smoothly running in physics mode since June 2022
- Detector performance evaluated with cosmic muons and protons from ν
 - Huge effort to calibrate and model detector response \longrightarrow Papers available in **arxiv**
- ICARUS well on the way to first physics results
 - Single detector v_{μ} disappearance with BNB beam
 - v_{μ} Ar cross-section measurements with NuMI beam
 - Sub-GeV dark matter candidates with NuMI beam 🔶 Co

Completed contained di-muon search

Looking forward for the SBN joint analysis!

ICARUS Collaboration at SBN

Spokesperson: C. Rubbia, GSSI

P. Abratenko¹⁹, N. Abrego-Martinez³, F. Akbar²³, L. Aliaga Soplin²⁴, M. Artero Pons¹⁵, W.F. Badgett⁵, L.F. Bagby⁵, B. Baibussinov¹⁵, B. Behera⁴, V. Bellini⁷, O. Beltramello², R. Benocci¹³, J. Berger⁴, S. Bertolucci⁶, M. Betancourt⁵, K. Biery⁵, M. Bonesini¹³, T. Boone⁴, B. Bottino⁸, J Bremer², S. Brice⁵, V. Brio⁷, C. Brizzolari¹³, J. Brown⁵, H.S. Budd²³, A. Campani⁸, A. Campos²⁷, D. Carber⁴, M. Carneiro¹, I. Caro Terrazas⁴, H. Carranza²⁴, R. Castillo Fernandez²⁴, S. Centro¹⁵, G. Cerati⁵, M. Chalifour², A.Chatterjee²⁶, D. Cherdack²¹, S. Cherubini¹¹, N. Chitirasreemadam²⁵, M. Cicerchia¹⁵, T. Coan¹⁸, A. Cocco¹⁴, M. R. Convery¹⁷, L. Cooper-Troendle²², S. Copello¹⁶, A. De Roeck², S. Di Domizio⁸, D. Di Ferdinando⁶, L. Di Noto⁸, M. Diwan¹, S. Dolan², S. Donati²⁵, R. Doubnik⁵, F. Drielsma¹⁷, J. Dyer⁴, S. Dytman²², C. Fabre², A. Falcone¹³, C. Farnese¹⁵, A. Fava⁵, N. Gallice¹, C. Gatto¹⁴, M. Geynisman⁵, D. Gibin¹⁵, A. Gioiosa²⁵, W. Gu¹, M. Guerzoni⁶, A. Guglielmi¹⁵, G. Gurung²⁴, S. Hahn⁵, H. Hausner⁵, A. Heggestuen⁴, B. Howard⁵, J. Hrivnak², C. James⁵, W. Jang²⁴, Y.-J. Jwa¹⁷, L. Kashur⁴, W. Ketchum⁵, J.S. Kim²³, D.H. Koh¹⁷, J. Larkin¹, G. Laurenti⁶, Y. Li¹, G. Lukhanin⁵, C. Mariani²⁷, C. Marshall²³, S. Martynenko¹, N. Mauri⁶, A. Mazzacane⁵, K.S. McFarland²³, D.P. Mendez¹, A. Menegolli¹⁶, G. Meng¹⁵, O.G. Miranda³, D. Mladenov², N. Moggi⁶, N.Montagna⁶, A. Montanari⁶, C. Montanari^{5,b}, M. Mooney⁴, G. Moreno Granados³, J. Mueller⁴, M. Murphy²⁷, D. Naples²², T. Nichols⁵, S. Palestini², M. Pallavicini⁸, V. Paolone²², L. Pasqualini⁶, L. Patrizii⁶, L. Paudel⁴, G. Petrillo¹⁷, C. Petta⁷, V. Pia⁶, F. Pietropaolo^{2,a}, F. Poppi⁶, M. Pozzato⁶, A. Prosser⁵, G. Putnam²⁰, X. Qian¹, A. Rappoldi¹⁶, G.L. Raselli¹⁶, R. Rechenmacher⁵, S. Repetto⁸, F. Resnati², A.M. Ricci²⁵, E. Richards²², A. Rigamonti², M. Rosemberg¹⁹, M. Rossella¹⁶, P. Roy²⁷, C. Rubbia⁹, M. Saad²², S. Saha²², G. Savage⁵, A. Scaramelli¹⁶, D. Schmitz²⁰, A. Schukraft⁵, D. Senadheera²², S.H. Seo⁵, F. Sergiampietri², G. Sirri⁶, J. Smedley²³, J. Smith¹, A. Soha⁵, L. Stanco¹⁵, H.Tanaka¹⁷, F. Tapia²⁴, M. Tenti⁶, K.Terao¹⁷, F. Terranova¹³, V.Togo⁶, D.Torretta⁵, M.Torti¹³, R. Triozzi¹⁵, Y.T. Tsai¹⁷, T. Usher¹⁷, F.Varanini¹⁵, S. Ventura¹⁵, M.Vicenzi¹, C. Vignoli¹⁰, P. Wilson⁵, R.J. Wilson⁴, J. Wolfs²³, T. Wongjirad¹⁹, A.Wood²¹, E. Worcester¹, M. Worcester¹, H. Yu¹, J. Yu²⁴, A. Zani¹², J. Zennamo⁵,

J. Zettlemoyer⁵, S. Zucchelli⁶, M. Zuckerbrot⁵

a On Leave of Absence from INFN Padovab On Leave of Absence from INFN Pavia

12 INFN groups, 12 US institutions, CERN, 1 Mexican institution, 1 Indian Institution

1. Brookhaven National Lab., USA 2. CERN. Switzerland 3. CINVESTAV, Mexico, 4. Colorado State University, USA 5. Fermi National Accelerator Lab., USA 6. INFN Bologna and University, Italy 7. INFN Catania and University, Italy 8. INFN Genova and University, Italy 9. INFN GSSI, L'Aquila, Italy 10. INFN LNGS, Assergi, Italy 11. INFN LNS, Catania, Italy 12. INFN Milano, Milano, Italy 13. INFN Milano Bic. and University, Italy 14. INFN Napoli, Napoli, Italy 15. INFN Padova and University, Italy 16. INFN Pavia and University, Italy 17. SLAC National Accelerator Lab., USA 18. Southern Methodist University, USA 19. Tufts University, USA 20. University of Chicago, USA 21. University of Houston, USA 22. University of Pittsburgh, USA 23. University of Rochester, USA 24. University of Texas (Arlington), USA 25. INFN Pisa and University, Italy 26. Ramanujan Faculty Phys. Res. India 27. Virginia Tech Institute