

Non-perturbative contributions to the low transverse momentum Drell-Yan pair production at NLO using the Parton Branching Method

> Nataša Raičević on behalf of the CASCADE group

University of Montenegro, Faculty of Science and Mathematics

Drell-Yan pair production in hadron-hadron collisions

❑ The production of **Drell-Yan (DY) lepton pairs** in hadron collisions excellent process to study various QCD effects

I – Non-perturbative region

- intrinsic motion of partons
- resummation of multiple soft gluon emissions
- II Transition region
- III Perturbative higher-order contributions dominating

introduces a transverse degree of freedom (k_T – parton transverse momentum) (rom ❑ DY production at NLO studied using the **Parton Branching (PB) Method which** the beginning instead of treating it as a higher order corrections

Parton branching

One branching More branchings

 \Box z_M - soft gluon resolution parameter defining resolvable (z < z_M) and non-resolvable $(z \cdot z_M)$ parton branchings

➢ PB method takes into account angular ordering based on colour coherence in QCD according to which the angles of partons with respect to an initial hadron increase in the subsequent branching

 $\mu' = |\mu'| = q_{\perp}/(1-z)$

Transverse Momentum Dependent (TMD) parton densities

- ❑ Parton evolution is expressed in terms of resolvable, real emission DGLAP splitting functions, ${\mathsf P}_{\sf ab}$ for parton splitting b \to a, and Sudakov form factors ($\Delta_{\sf a}$) which give the probability to evolve from one scale to another scale without resolvable branching
- \Box The TMD for a parton a, with the longitudinal momentum fraction x of the hadron and the transverse momentum k , evaluated at a scale μ :

$$
\mathcal{A}_{a}(x, \mathbf{k}, \mu^{2}) = \Delta_{a}(\mu^{2}) \mathcal{A}_{a}(x, \mathbf{k}, \mu_{0}^{2}) + \sum_{b} \int_{\mu_{0}}^{\mu} \frac{d^{2} \mu'}{\pi \mu'^{2}} \frac{\Delta_{a}(\mu^{2})}{\Delta_{a}(\mu'^{2})} \Theta(\mu^{2} - \mu'^{2}) \Theta(\mu'^{2} - \mu_{0}^{2})
$$

$$
\times \int_{x}^{z_{M}} \frac{dz}{z} P_{ab}^{(R)}(\alpha_{s}, z) \mathcal{A}_{b} \left(\frac{x}{z}, \mathbf{k} + (1 - z) \mu', \mu'^{2}\right)
$$

$$
\Delta_{a}(z_{M}, \mu^{2}, \mu_{0}^{2}) = \exp\left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \int_{0}^{z_{M}} dz \ z P_{ba}^{(R)}(\alpha_{s}, z)\right)
$$

- the TMD at the starting scale μ_0 is a nonperturbative boundary condition to the evolution equation and is determined from experimental data

- \triangleright Integration of $\mathcal{A}_a(x,\mathbf{k},\mu^2)$ over all **k** gives collinear PDFs $f_a(x,\mu^2)$
- \triangleright $z_M \rightarrow 1$ gives the exact solution of the DGLAP evolution
- > With angular ordering, TMDs well defined and independent of the choice of the softgluon resolution scale when $z_M \rightarrow 1$

Impact of the internal motion on k_T distributions

Intrinsic k_T - transverse momentum which posses parton inside a hadron due to its internal (Fermi) motion

In the evolution, it is introduced as a nonperturbative parameter and is generated from a Gaussian distribution of of the width σ which is expressed via parameter **q^s** in the PB model: $\sigma^2 = q_s^2/2$

 $A_a(x, k_0, \mu_0^2) = f_a(x, \mu_0^2) \exp(-|k_0^2|/q_s^2)/(J\pi q_s)$

 \Box $\alpha_s = \alpha_s (\mu'^2 (1 - z)^2) = \alpha_s (q_T^2) \rightarrow$ the TMD set termed as PB-NLO-2018 set 2

 \triangleright Significant effect of the intrinsic- k_T at low k_T and low scales

Soft contributions and Sudakov form factor

 \Box Since α_s = α_s (q_T) \rightarrow q_0 where α_s is frozen leads to two different regions: a perturbative region, with $\mathsf{q}_\mathsf{T}\mathbin{\succ} \mathsf{q}_0$, and and non-perturbative region of $\mathsf{q}_\mathsf{T}\mathord{\prec} \mathsf{q}_0$

 $z_{dyn} = 1 - q_0/\mu'$

- \rightarrow Two regions of z:
- a perturbative region, with 0 < z < z $_{\sf dyn}$ (q $_{\sf T}$ > q $_{\sf o})$
- $\,$ a non-perturbative region with $z_{\sf dyn}$ < z < $z_{\sf M}$ $\,$ $\,(q_{\sf T}$ < $q_{\sf O})$
- \triangleright define a perturbative (P) and non-perturbative (NP) (z_{dyn} < z < z_{M} , z_{M} \rightarrow 1) Sudakov form factors

$$
\Delta_a(\mu^2, \mu_0^2) = \exp\left(-\sum_b \int_{\mu_0^2}^{\mu^2} \frac{d\mathbf{q'}^2}{\mathbf{q'}^2} \int_0^{z_{\rm dyn}} dz \ z \ P_{ba}^{(R)}(\alpha_s, z)\right)
$$

$$
\times \exp\left(-\sum_b \int_{\mu_0^2}^{\mu^2} \frac{d\mathbf{q'}^2}{\mathbf{q'}^2} \int_{z_{\rm dyn}}^{z_{\rm M}} dz \ z \ P_{ba}^{(R)}(\alpha_s, z)\right)
$$

$$
= \ \Delta_a^{(P)}\left(\mu^2, \mu_0^2, q_0^2\right) \cdot \Delta_a^{(NP)}\left(\mu^2, \mu_0^2, q_0^2\right) \ .
$$

DY pairs with low invariant mass

- ❑ For theoretical prediction PB TMD Monte Carlo event generator CASCADE3 based on PB-NLO-2018 Set2 is used (default - q_s = 0.5 GeV, q_T > $q_\text{0} \simeq$ 0 GeV)
- ❑ Matrix elements are obtained from the MADGRAPH5_AMC@NLO event generator at next-to-leading (NLO) and are matched with TMD parton distributions and showers obtained from PB evolution
- ❑ The final state parton shower in CASCADE3 is generated from PYTHIA since here are no PB-fragmentation functions available yet

QED radiation not contributing to the low DY invariant mass and low pair p_T region

7 ➢ Fair description of the low DY pair invariant mass and transverse momentum distributions obtained in hadron-hadron collisions at low energies.

DY pair production at the LHC and the impact of QED

➢ QED plays important role in the mass region bellow the Z peak down to about 40 GeV

 \triangleright PB provides a good description of experimental DY invariant mass and transvers ${\bf e}_{\rm b}$ momentum distributions in the wide range of center-of-mass collision energies

Determination of the Gaussian width q_s

❑ The recent publication from CMS on transverse momentum distribution in a wide DY invariant mass [[2](https://arxiv.org/abs/2205.04897)] provides a detailed uncertainty breakdown

 \Box q_s parameter in PB-NLO-2018 Set 2 is varied and compared to the measurement

 \triangleright χ^2 is calculated to quantify the model agreement to the measurement

$$
\chi^2 = \sum_{i,k} (m_i - \mu_i) C_{ik}^{-1} (m_k - \mu_k)
$$

The covariance matrix C_{ik} consists of a component describing the uncertainty in the ⊔ measurement, C_{ik}measurement, and the statistical (bin by bin stat. unc) and scale uncertainties in the prediction

$$
C_{ik} = C_{ik}^{measurement} + C_{ik}^{model-stat.} + C_{ik}^{scale}
$$

$$
q_s = 1.04 \pm 0.08 \text{ GeV}
$$

DY data at lower energies

- ❑ No full error breakdown is available for the other measurements
- ➢ All uncertainties treated as being uncorrelated and do not include any systematic uncertainty coming from the scale variation in the theoretical calculation

Intrinsic k_T -width depending on \sqrt{s} and DY mass

 q_0 = 10⁻² GeV - minimal parton transverse momentum emitted at a branching

Eur.Phys.J.C 84 (2024) 2, 154

- \rightarrow Consistent values of q_s for a large range of DY pair invariant masses
- \rightarrow Very mild or no centre-of-mass energy dependence of q_s
- \rightarrow The result in contrast to the ones obtained from standard Monte Carlo event generators which need a strongly increasing intrinsic- k_T width with \sqrt{s}

T. Sjostrand, Peter Z. Skands, JHEP 03 (2004) 053; Stefan Gieseke, Michael H. Seymour, Andrzej Siodmok, JHEP 06 (2008) 001; ¹¹ CMS, *GEN-22-001, 2024*

Try to introduce energy dependence of the intrinsic-k_T in PB

❑ Try to mimic parton-shower event generators by demanding a minimal parton transverse momentum (q_0 = 1 and 2 GeV) \rightarrow $q_{\scriptscriptstyle\rm T}$ > q_0

$$
\rightarrow
$$
 z_M constrained: z_M= z_{dyn} = 1 - q₀/ μ ' < 1

$$
\Rightarrow \Delta_a^{(NP)}\left(\mu^2, \mu_0^2, q_0^2\right) = \exp\left(-\sum_b \int_{\mu_0^2}^{\mu^2} \frac{d\mu'}{\mu'^2} \int_{z_{\text{dyn}}}^{z_M} dz \ z \ P_{ba}^{(R)}\left(\alpha_s, z\right)\right) - \text{neglected}
$$

 \rightarrow Real emissions with z > 1 - q_0/μ' - neglected

❑ Integrated parton distributions very different for the two cases

 \rightarrow soft contributions important also for collinear distributions

 q_{s} vs $\mathsf{\mathcal{S}}$ for different q_{0}

- \Box The intrinsic- k_T width parameter increases with the collision energy
- \Box The slope od the dependence increases as q_{0} increases
- \Box Larger q_0 means that more soft contributions are excluded
	- \rightarrow Larger intrinsic-k_T needed to compensate missing contribution from soft gluons

13

Closer look into DY pair low p_T distributions with different q_0

[arXiv:2404.04088](https://arxiv.org/pdf/2404.04088)

- \triangleright The data and the prediction distributions obtained for the three values of q_0 (0, 1, 2 GeV) with optimal values of q_s (1, 1.4, 2.1 GeV) for each q_0
- \triangleright The (small) difference in the transition region (p $_{\mathsf{T}}(\mathsf{II})\gtrsim 4$ GeV) influenced by the missing soft gluon contribution which is larger at higher q_0

q_s as a function of DY pair invariant mass with a q_0 cut at LHC

- From the available measurements and existing uncertainties: q_s remains independent of the DY pair invariant mass for $q_0 \lesssim 2$ GeV
	- \rightarrow the fraction of soft parton contributions with the transverse momentum \sim 1 GeV which populate the DY p_T region up to 2-3 GeV similar for different mass regions

Integrated PDFs with a q_0 cut at high scales

The scale values relevant for available measurements from LHC

- \Box The change of the integrated PDFs by introducing a cut of $q_0 \sim 1$ GeV is similar for different scale values, μ, relevant for the available measurements at the LHC
	- \rightarrow Consistent with the result of q_s vs m(II) from the available measurements from LHC
	- \rightarrow Consistent with the non-perturbative Sudakov FF which is sensitive at small values of μ (the next slide) and changes slowly with μ in the region of $\mu \sim 100$ GeV where measurements from the LHC have been performed

Integrated PDFs with q_0 cut at low scales

- ❑ Different trend at low μ which corresponds to the measurements of the pair p_T at low invariant masses not yet available at the LHC
- \triangleright The change in the integrated PDFs by introducing the $q_0 \sim 1$ GeV cut varies rapidly with the μ scale relevant for DY pair masses ~10 GeV
	- \rightarrow The relative amount of soft gluons removed by the cut changes significantly at low scales and the measurable changes in the value of q_s could be expected at low DY pair invariant masses

q_s as a function of DY pair invariant mass with a q_0 cut at small \sqrt{s}

- ❑ At the collision energies of 27.4 GeV (E288) and 38.8 GeV (E605), the DY pairs with the low inv. mass are mainly produced at high x from the valence contributions
- \triangleright One cannot expect measurable dependence of q_s on DY pair invariant mass

 \rightarrow Although the errors are large and it is not possible to draw a firm conclusion, the trend of change of the q_s with m(II) is noticeable in the measurements obtained from the E605

 Z peak region for different q_0

❑ The prediction distributions obtained at different center of mass collision energies for the three values of q_0 (0, 1, 2 GeV) with optimal values of q_s

- ❑ Similar relative contribution of soft emissions in the transition region at different collision energies
- 19 \Box The cut on the transverse momentum of the radiated parton in the branching, \mathfrak{q}_0 , up to 2 GeV does not affect the distribution of the transverse momentum of the Drell-Yan pair with p $_{\sf T}$ (II) $\gtrsim 10$ -15 GeV

- \Box The PB method provides a measurement of the intrinsic- k_T width that does not depend on the invariant mass of the DY pair, nor on the center-of-mass collision energy √s
- > The inclusion of soft gluons is crucial for providing \sqrt{s} -independent intrinsic- k_T
- ❑ We learned the following about the soft gluons contribution to DY pair production in hadron-hadron collisions:
- ➢ There is an interplay between the internal transverse motion and soft gluon contribution in the non-perturbative region of the DY transverse momentum distribution
- \triangleright The relative contribution of the soft gluon emissions which interplays with internal parton transverse motion increases with the collision energy
- ➢ With the available measurements and existing uncertainties, we still cannot confirm the dependency of the relative soft gluon contribution on the DY pair invariant mass \rightarrow consistent with the behaviour (the small sensitivity) of the non-perturbative Sudakov FF in the measured regions
- 20 \Box The intrinsic-k_T contribution can be disentangled from the non-perturbative Sudakov one only by the proper treatment of the non-perturbative processes which can be provided by the PB Method due to its sensitivity to non-perturbative TMD contributions

Thank you very much for your attention

References

- [1]<https://arxiv.org/abs/1812.10529>
- [2]<https://arxiv.org/abs/2205.04897>
- [3]<https://arxiv.org/abs/2112.07458>
- [4]<https://arxiv.org/abs/2102.13648>
- [5]<https://arxiv.org/abs/1512.02192>
- [6]<https://arxiv.org/abs/1207.7138>
- [7]<https://arxiv.org/abs/hep-ex/0001021>
- [8]<https://arxiv.org/abs/hep-ex/9907009>
- [9]<https://arxiv.org/abs/1805.02448>
- [10]<https://journals.aps.org/prd/abstract/10.1103/PhysRevD.43.2815>

The ratio of the cross section to Z peak region for different q_0

23 \square The ratio of the cross section to the Z peak similar for different DY pair invarignt mass regions for $q_0 \lesssim 2$ GeV