

XIII International Conference on New Frontiers in Physics 26 Aug - 4 Sep 2024, Kolymbari, Crete, Greece

Upgrade of the CMS Electromagnetic Calorimeter for the High-Luminosity LHC

Giulia Lavizzari on behalf of the CMS Collaboration

LHC High Luminosity Upgrade (Phase 2)

Phase 2 will deliver to the experiments a **much larger dataset** compared to Phase 1.

To achieve this, **unprecedented instantaneous luminosities** will be provided: (currently $\mathcal{L} = \mathbf{2} \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \rightarrow \mathcal{L} = \mathbf{7.5} \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$)

This will pose several challenges for the CMS subdetectors:

- More collisions per Bunch Crossing (Pile Up 30-60 → 140-200)
- More radiation damage
- More stringent requirements
 - longer latencies ($4.2 \,\mu s \rightarrow 12 \,\mu s$)
 - o higher trigger rates (100 kHz → 750 kHz)

full renovation of many subdetectors (+ new timing layer)

The CMS subdetectors upgrade

Phase 2 will deliver to the experiments a **much larger dataset** compared to Phase 1.

To achieve this, **unprecedented instantaneous luminosities** will be provided: (currently $\mathcal{L} = 2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \rightarrow \mathcal{L} = 7.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$)

This will pose several challenges for the CMS subdetectors:

- More collisions per Bunch Crossing → better discrimination of spurious events (Pile Up 30 → 200)
- More radiation damage → radiation tolerance
- More stringent requirements
 - longer latencies ($3.5 \mu s \rightarrow 12 \mu s$)
 - higher trigger rates (100 kHz \rightarrow 750 kHz)

longer pipelines and faster readout

The CMS Electromagnetic Calorimeter

key role in the **detection of electrons and photons** for the CMS experiment at LHC

- homogeneous, fine grained, high-resolution calorimeter
- PbWO₄ scintillating crystals
 - avalanche photodiodes (APD) in barrel
 - vacuum phototriodes in endcaps

Phase 2 Upgrade:

- endcaps and forward calorimeters will be replaced by HGCAL
- barrel:
 - full refurbishment of electronics
 - crystals + APDs will not change, but will
 be operated at lower temperature

Phase2 physics goal for ECAL barrel

1. the goal is to **maintain the performance of Phase 1** despite the harsher datataking conditions: **target energy resolution same as Phase 1**

Electronics upgrade:

Electronics upgrade: ON-DETECTOR

CATIA (analog ASIC)

2x transimpedance amplifier

LITE-DTU (digital ASIC)

2x 12-bit ADCs sampling at 160 MHz gain selection & data transmission unit lossless data compression algorithm

Faster analog electronics

(larger analog bandwidth, sampling rate from 40 to 160 MHz, with 12-bit resolution)

→ better noise filtering and time measurements

LpGBT

radiation tolerant optical transmission system

Fast optical links for data transmission

Electronics upgrade: OFF-DETECTOR

APD

HCAL

ECAL

Trigger objects reconstructed off-detector:

→ 25x more granular trigger primitives (single crystal granularity)

Powerful spikes suppression algorithms

Spikes are particle ionizing in the APDs

Barrel Calorimeter Processor (BCP)

FPGA based data aggregator

- + decompression algorithm
- + trigger primitives construction
 - + spike killing algos

Laser monitoring upgrade

The Laser monitoring system **continuously monitors crystal transparency changes** using **PN diodes as a reference.**

• HL-FEM (Front End Module):

- hosts the **PN diodes, 2x** wrt Phase 1
- hosts the new charge pre-amplifier MONACAL ASIC
- HL-MEM (Monitoring Electronics read-out Module)
 - LITE-DTU for signal digitization
- Data are sent to the backend electronics through **standard FE boards**
- Interface with trigger and DAQ through commercial FPGAs

Test Beams

H4 test beam line at the North Area of the CERN SPS: e^+/e^- (20 - 300 GeV, $\Delta p/p < 0.5\%$)

- **Physics performance:** timing and energy resolution
- System stability tests
- Test of prototypes up to their final design
 - VFE v3.0 currently in pre-production
 - FE v3.3 ready for production (stable data transmission!)
 - \circ \quad BCP v2 firmware and layout near completion

Recent Test Beam campaigns (1/2)

2018: first CATIAv0 prototype

• Single readout unit + custom readout electronics

2021: full VFE design

- 5 VFE cards tested, 25 crystals
- custom readout electronic
- data for physics performance evaluation

2022: full readout chain

- Commissioning of the readout chain
- few data taken for physics → mainly system commissioning and stability tests

Recent Test Beam campaigns (2/2)

2023:

- The whole electronic chain is mounted on a spare SuperModule (SM36), identical to the ones in ECAL
 - 25 crystals x 9 readout units
 - full-setup test, very close to real detector conditions!
 - first time taking physics data with BCPs (v1)
- **Upgrade laser monitoring**, between e⁺/e⁻ fills
 - laser is used in ECAL to monitor crystal transparency

NEXT: Oct 2024

Test Beam setup (2023)

2023 TB results: general considerations

Electron signal amplitude *A* **and time** *t*⁰ are reconstructed with a **template fit**:

 $f(x) = A \cdot template(t - t_0)$

templates via software oversampling in frequency domain

ECAL Preliminary Beam test 2023, H4/SPS **ECAL** Preliminary Beam test 2023, H4/SPS 1 6 2000 100 GeV iq (crystal coordinates) 0.8 1500 0.6 A.u. 5 1000 0.4 0.2 500 0 Ω -2020 40 60 52 -4053 54 Time (ns) in (crystal coordinates) Giulia Lavizzari - ICNFP 2024 - Upgrade of the CMS Electromagnetic Calorimeter for the High-Luminosity LHC

Electron impact position in a matrix of n crystals is reconstructed based on the energy deposits in each crystals:

Timing resolution

Obtained using data collected with e+/- beam firing between two crystals

Giulia Lavizzari - ICNFP 2024 - Upgrade of the CMS Electromagnetic Calorimeter for the High-Luminosity LHC

Energy resolution

Monochromatic e+/- beam firing at the center of a single crystal

- $\sigma_{\rm E}/{\rm E}$ retrieved from fit of signal amplitude distribution
- Computed using a **3x3** crystal matrix

(INFN Giulia Lavizzari - ICNFP 2024 - Upgrade of the CMS Electromagnetic Calorimeter for the High-Luminosity LHC

Conclusions

→ The upgrade of ECAL for Phase 2 consists in a full refurbishment of the electronics (on-detector and off-detector):

- need to comply with more stringent trigger and DAQ requirements
- need to mitigate the increased radiation-induced noise
- target 30ps timing precision and 1% energy resolution (> 50 GeV)

Performance tests ongoing at several Test Beams (2018 - ongoing)

- Test of prototypes and commissioning of full readout chain
- Collected large dataset for physics performance evaluation
 - so far, in line with targeted specifications!

Components design almost finalized and production started!

Lossless compression algorithm

"Baseline" data format	01	01 6 bits sample		6 bits sample		6 bits sample	6 bits sample	e 6 bits sample	
"Baseline" data format 1	10	10 sample map		6 bits sample	e/00	6 bits sample/00) 6 bits sample/	00 6 bits sample	
"Signal" data format	001010			13 bits sample			13 bits sample		
"Signal" data format 1		001011			01010	10	13 bits sample		
Frame delimiter	11	1 8 bits #samples			CRC12		8 bits frame #		
Idle pattern	11	1110 1010101010					implementation of lossless data		
	compression algorithm <u>CMS-TDR-015</u>							ion algorithm TDR-015	

Pulse shape vs APD spike

Comparison of the pulse shape from a scintillation event and a signal induced by a direct hit in the avalanche photodiode. The latter was identified using topological constraints. Pulses are re-aligned in time to the first sample of the rising edge. The solid line are the templates of the two signals.

ECAL Preliminary

Beam Test 2022

Barrel Calorimeter Processor

→ Back-end off-detector electronics both for ECAL and HCAL (barrel)

- One BCP for **up to 24 TTs** (600 crystals)
- Control and clock distribution
- Single crystal trigger primitives generation (currently done by the FE)
- Data acquisition from detector and transmission to central DAQ

v1 → **KU115**

✓ already operational and tested, employed in TBs

v2 → VU13P

More memory and logic cells, more digital signal processing power

Design and fw close to completion

Linearity in single crystal response (TB 2021)

Single crystal response in terms of average amplitude of the signal (in ADC counts) w.r.t. the energy of the incident electron-beam. In the lower panel we report the deviation of the reconstructed energy (in ADC count) with respect to the linear fit. Maximum deviation from linearity is < 0.3%.

