XIII International Conference on New Frontiers in Physics 26 Aug - 4 Sep 2024, OAC, Kolymbari, Crete, Greece

Tests and modifications of hadronic interactions in cosmic-ray showers

Jakub Vícha *, Jiri Blazek, Nikolas Denner, Jan Ebr, Tanguy Pierog, Eva Santos, Petr Travnicek

FZU - Institute of Physics of the Czech Academy of Sciences, Prague

* vicha@fzu.cz

Hadronic interactions in air showers

sensitive to primary mass

• Extrapolated to higher energies and different kinematic regions than accessible

→ systematic uncertainty on interpreted mass composition

- Depth of shower maximum (X_{max})
- Number of muons (decays of π^{\pm})

ICNFP 2024

√s=14TeV

SD signal

- muon content
 - from buried scintillators. $\theta < 60^{\circ}$
 - → from N₁₀, θ >65° [Phys. Rev. D 91 (2015), 032003]
- muon production depth
 - → for core distance r > 1500m, θ>65° [Phys. Rev. D 90 (2014) 012012]
- muon energy spectrum
 - → from attenuation with θ and r

FD longitudinal profile

- estimation of primary • masses from X_{max} fits [PRD 90 (2014) 122006, PoS ICRC2023 (2023) 438]
- interpretation of X_{max} • moments using In A [JCAP 02 (2013) 026, PoS (ICRC2023) 365]
- p-air cross-section from tail of X_{max} distribution

[Phys. Rev. Lett. 109 (2012) 062002, PoS ICRC2023 (2023) 438]

- average shape of longitudinal profiles [JCAP 03 (2019) 018]
- frequency of anomalous showers

[EPJ Web of Conferences 144 (2017) 01009]

See talks of Tobias Schulz and Vitor de Souza for more detail

ICNFP 2024

SD signal

- muon content
 → from buried
 - scintillators, $\theta < 60^{\circ}$ \rightarrow from N₁₀, $\theta > 65^{\circ}$
- muon production depth
 for core distance
 r > 1500m, θ>65°
- muon energy spectrum
 - → from attenuation with θ and r

FD Longitudinal profile

- estimation of primary masses from X_{max} fits
- Problem to describe the size of the muon content
 factor ~1.3-1.6 !
- Muon fluctuations consistent with data (no obvious problem in the first interaction)

5

 frequency of anomalous showers

ICNFP 2024

FD longitudinal profile

- estimation of primary masses from X_{max} fits
- interpretation of X_{max} moments using In A

ICNFP 2024

ICNFP 2024

Ground signal + Longitudinal profile

- correlation between X_{max} and S(1000)
- top-down approach -> R_{had}
- applying shower-universality approach -> R_{had}
- 2-dim distributions [S(1000),X_{max}] -> $R_{had}(\theta)$, ΔX_{max}

ICNFP 2024

Ground signal + Longitudinal profile

- correlation between X_{max} and S(1000)

- ~Model-independent estimator of spread of beam masses
- Tension with light masses from X_{max} fits for QGSJet II-04 (too shallow X_{max} scale)

ICNFP 2024

Ground signal + Longitudinal profile

- correlation between X_{max} and S(1000)
- top-down approach -> R_{had} ~ 1.3 1.6 !
 [Phys. Rev. Lett. 117 (2016) 192001]
- applying shower-universality approach -> R_{had}
- 2-dim distributions [S(1000), X_{max}] -> R_{had}(θ), ΔX_{max}

- Mass from measured $X_{_{max}}$ depends on MC $X_{_{max}}$ scale
- Strong dependence on energy scale

ICNFP 2024

Ground signal + Longitudinal profile

- correlation between X_{max} and S(1000)
- top-down approach -> R_{had}
- applying shower-universality approach
 -> R_{had} ~ 1.1 1.3 [PoS(ICRC2023)339, arXiv:2405.03494]
- 2-dim distributions [S(1000),X_{max}] -> $R_{had}(\theta)$, ΔX_m

- R_{had} smaller than in top-down approach
- ~Insensitive to the MC $\rm X_{max}$ scale

Mass composition & tests of hadronic interactions

Improvement in data description

[Phys. Rev. D 109 (2024) 102001]

p-values of fits from MC-MC tests > 10% for all three models

$\ln \mathscr{L}_{\min}$	EPOS-LHC	QGSJET-II-04	SIBYLL 2.3d
none	2022.9	4508.0	2496.5
$\Delta X_{\rm max}$	738.6	1674.8	1015.7
$R_{\rm had} = {\rm const.}$	489.2	684.4	521.6
$R_{\rm had}(\boldsymbol{ heta})$	489.2	673.9	517.6
$R_{\rm had} = {\rm const.} \text{ and } \Delta X_{\rm max}$	452.2	486.7	454.2
$R_{\rm had}(\theta)$ and $\Delta X_{\rm max}$	451.9	476.3	451.6

Significant improvement >5 σ using R_{had} and ΔX_{max} (Likelihood ratio tests for nested model using Wilks' theorem)

ICNFP 2024

12/23

Fitted parameters

[Phys. Rev. D 109 (2024) 102001]

ICNFP 2024

Scanning in combinations of experimental systematics

ICNFP 2024

Summary of tests of models using Auger data

test	energy / Ee'	V $\theta / ^{\circ}$	Epos-LHC	QGSJET-II-04	SIBYLL 2.3d
X _{max} moments	\sim 3 to 50	0 to 80	no tension	tension	no tension (2.3c)
X_{\max} : $S(1000)$ correlation	3 to 10	0 to 60	no tension	tension	no tension (2.3c)
mean muon number	$\sim \! 10$	${\sim}67$	tension	tension	tension
mean muon number	0.2 to 2	0 to 45	tension	tension	
fluctuation of muon number	4 to 40	${\sim}67$	no tension	no tension	no tension
muon production depth	20 to 70	$\sim \! 60$	tension	no tension	
<i>S</i> (1000)	$\sim \! 10$	0 to 60	tension	tension	
[X _{max} , S(1000)]	3 to 10	0 to 60	tension	tension	tension

- All models have problems ...
- A need to describe consistently both X_{max} and ground signal
 issue in both observables !

ICNFP 2024

Adding muons ~ without changing X_{max}

Core-corona model - collective statistical hadronization → EPOS 4

Sibyll * - artificial enhancement of muons

ICNFP 2024

Modifications of hadronic interactions

- 1D CONEX simulations
- Sibyll 2.1 @ 10^{19.5} eV
- Cross-section modification, or resampling of produced particles
- Energy threshold for modifications 10¹⁵ eV

ICNFP 2024

Towards more complex explanation: MOCHI

MOdified Characteristics of Hadronic Interactions

- CONEX in CORSIKA: 3D information
- Modification factors in cross-section, multiplicity and elasticity

- MOCHI library:
 - Sibyll 2.3d
 - energy 10^{18.7} eV
 - protons and iron nuclei
 - 5 zenith angles
 - 1000 showers per "bin"
 - 750 000 showers (~200 TB, ~250y CPU time)

ICNFP 2024

J. Vícha (FZU): Tests and modifications of hadronic interactions in cosmic-ray showers

18/23

See [PoS(ICRC2023)245] for more detail

Range of modifications and thresholds

Cross-section ($E_{thr} = 10^{16} \text{ eV}$)

well constrained for p-p at LHC to a few %
unc. in conversion to p-A limited by CMS p-Pb measurement

Multiplicity ($E_{thr} = 10^{15} \text{ eV}$)

- no p-A data, limited rapidity coverage

Elasticity ($E_{thr} = 10^{14} \text{ eV}$)

- difficult at accelerators, limits from nuclear emulsion chambers

- recent LHCf neutron elasticity measurement?
- range of modifications limited by internal consistency

$$f(E, f_{19}) = 1 + (f_{19} - 1) \cdot \frac{\log_{10}(E/E_{\text{thr}})}{\log_{10}(10 \text{ EeV}/E_{\text{thr}})}$$

ICNFP 2024

Comparison with Auger results

ICNFP 2024

Effect on tail of Xmax distribution

ICNFP 2024

Effect on X_{max} fluctuations

ICNFP 2024

Conclusions

- We are facing change of mass-composition paradigm → we should start seriously consider "disappointing" heavy scenario of ultra-high energy cosmic rays
- Models of hadronic interactions proven to fail to describe air-shower data > 5σ
 - possible underestimation of experimental systematics ruled out
- Modifications of macro-parameters (cross-section, multiplicity, elasticity) of hadronic interactions does not seem (preliminary) to be enough

→ different approach is needed: modifying micro parameters (production rates and energy spectra of secondary particles) or (not exclusively!) revisions of models of hadronic interactions (EPOS 4, QGSJet III?, ...)

- p + O run at LHC is extremely important for decrease of systematic uncertainties on mass composition of UHECR
- AugerPrime (2024-2035) will be the best test facility so far for hadronic interactions at $\sqrt{s} \sim 100$ TeV

Backup slides

Hybrid detection at the Pierre Auger Observatory

ICNFP 2024

Attenuation of hadronic signal with θ

Indication of harder muon spectra in QGSJet II-04 than in data

Motivations for modifications of MC predictions

Properties of 4-component shower universality: 850

[Astropart. Phys. 87 (2017) 23, Astropart. Phys. 88 (2017) 46]

- S(1000) = S_{had} + S_{em}
- S_{em} very universal
- Main differences between model predictions:
 - Scale of (X_{max}) and (S_{had})(θ) are approx. primary and energy independent

Caveat: no modifications in fluctuations or mass-depencies etc. considered

ad-hoc modifications

$$X_{max} \rightarrow X_{max} + \Delta X_{max}$$

 $S_{had}(\theta) \rightarrow S_{had}(\theta) \cdot R_{had}(\theta)$

Effect of modified X_{max} **on the ground signal**

ICNFP 2024

J. Vícha (FZU): Tests and modifications of hadronic interactions in cosmic-ray showers

29/23

Assumption on primary species

• ΔX_{max} decreases by about 5-7, 10-17 and 30-40 g/cm² and $R_{had}(\theta)$ increases by about 2-5%, 4-9% and 15-20% when the heaviest primary Fe is replaced by Si, O and He, respectively

$\ln \mathscr{L}_{\min}$	EPOS-LHC	QGSJET-II-04	SIBYLL 2.3d
p He	518.3	633.5	563.5
p He O	467.5	523.3	486.6
p He O Fe	451.9	476.3	451.6

Significance of improvement of data description above 5σ

Systematic uncertainties

ICNFP 2024

J. Vícha (FZU): Tests and modifications of hadronic interactions in cosmic-ray showers

31/23

MC-MC tests

ICNFP 2024

#

J. Vícha (FZU): Tests and modifications of hadronic interactions in cosmic-ray showers

Importance of 3D simulation

ICNFP 2024

Possible mass-(in)dependence of X_{max} shift

"changing the normalization of energy dependence" \rightarrow mass independent modifications

multiplicity: $N \propto N_0 \cdot E^{\alpha}$ inelasticity: $\kappa \propto \kappa_0 \cdot E^{-\omega}$

$$X_{\max}^{A} = X_{1}^{A} + X_{0} \ln \frac{\kappa E}{A \cdot 2N\xi_{c}^{\pi}} =$$

$$X_{1}^{A} + (1 - \alpha - \omega) \cdot (X_{0} \ln \frac{E}{A \cdot \xi_{c}^{\pi}}) + X_{0} \cdot (\ln \kappa_{0} - \ln N_{0})$$

$$\stackrel{\kappa_{0} \rightarrow f_{\kappa} \kappa_{0}}{N_{0} \rightarrow f_{N} N_{0}} \Rightarrow \qquad X_{\max}^{A} = X_{\max}^{A} + X_{0} (\ln(f_{\kappa}) - \ln(f_{N}))$$

MOCHI (preliminary) [PoS(ICRC2023)245]

"changing the shape of energy dependence" \rightarrow mass-dependent modifications

