Performance of the ICARUS Trigger System at the Booster and NuMI Neutrino Beams

Riccardo Triozzi

University of Padova & INFN Padova

European Commission

Intense

Università degli Studi di Padova

Short Baseline Neutrino Program

Several anomalies were observed at neutrino oscillation experiments (LSND, MiniBooNE), which might be explained with an additional **sterile neutrino** state.

SBN aims at studying anomalous neutrino oscillations at short baselines, using Liquid Argon TPC (**LArTPC**) detectors along the Booster Neutrino Beam (**BNB**):

- * measuring v_{μ} -disappearance and v_{e} -appearance within the same experiment, covering at 5 σ the parameter regions allowed by LSND/MiniBooNE;
- * ICARUS also collects neutrinos from the Main Injector (NuMI) off-axis, for cross-section and BSM studies.

Short Baseline Neutrino Program

See **M. Artero**'s talk on first **ICARUS** physics **results tomorrow**!

Several anomalies were observed at neutrino oscillation experiments (LSND, MiniBooNE), which might be explained with an additional **sterile neutrino** state.

SBN aims at studying anomalous neutrino oscillations at short baselines, using Liquid Argon TPC (**LArTPC**) detectors along the Booster Neutrino Beam (**BNB**):

- * measuring ν_{μ} -disappearance and ν_{e} -appearance within the same experiment, covering at 5 σ the parameter regions allowed by LSND/MiniBooNE;
- * ICARUS also collects neutrinos from the Main Injector (NuMI) off-axis, for cross-section and BSM studies.

The ICARUS Detector

After underground operation at LNGS and overhauling at CERN/INFN, ICARUS is taking data at FNAL:

- * first large-scale LArTPC detector, with 476 t of active liquid argon;
- * two identical modules, each housing two TPCs separated by a shared cathode (uniform 500 V/cm field);
- \star four anodic wire planes with three views each for 3-d. imaging;
- * 360 8" **PMTs** (90 per TPC) behind the wires to collect scintillation light (~20,000 γ/MeV at 500 V/cm).

At FNAL, ICARUS operates at the surface:

- * enclosed in a $\sim 4\pi$ Cosmic Ray Tagger (**CRT**) based on plastics scintillators;
- * \sim 3-m concrete overburden reduces cosmic ray flux.

Riccardo Triozzi – ICNFP 2024

The ICARUS Trigger

The ICARUS trigger is **online** and fully implemented on hardware, based on FPGA programmable logic:

- interactions from ~GeV neutrinos are on average contained in ~4-m longitudinally;
- each module is sliced in three side-by-side 6-m windows (Run1), plus two additional overlapped windows (Run2 – now);
- * each window contains 60 PMTs (30 per TPC, front-facing), discriminated with a 13 PEs threshold and paired (OR) into digital LVDS signals.

A **global trigger** is issued when there are at least 5 PMT-pairs over threshold in a window (**PMT-Majority** trigger, Mj = 5) in coincidence with BNB or NuMI, and TPCs/PMTs/CRTs are all readout.

ICARUS module

Trigger Menu

Several triggers are routinely collected with both BNB and NuMI.

As just described, PMT-Majority triggers are collected based on scintillation light:

- * **on-beam**, in coincidence with BNB and NuMI spills (trigger for beam physics);
- * off-beam, in between spills (background statistics).

Minimum Bias triggers are collected when there is a gate, <u>regardless</u> of the scintillation light, on and off-beam:

- this is done every ~20 gates (prescale factor, varying for different streams);
- * useful for trigger efficiency, calibrations, and detector physics studies.

Operation of the Trigger

The ICARUS trigger is designed to **select physical interactions** within the BNB and NuMI beam spills:

- * it rejects \sim 97% of spills, either empty or with negligible activity;
- beam-related activity (neutrinos, beam-halo, dirt) is an evident excess in the on-beam data with respect to the off-beam data;
- the structures of BNB (1.6 μs spill) and NuMI (9.5 μs spill, 6 batches) are visible: the proton-bunches sub-structure can be further reconstructed with PMTs and accelerator signals.

The trigger system enabled stable ICARUS operations:

	Trigger	BNB [POT]	NuMI [POT]
Run1	Mj-5 (3 windows)	$0.41 \cdot 10^{20}$	$0.68 \cdot 10^{20}$
Run2	Mj-5 (5 windows)	$2.05 \cdot 10^{20}$	$2.74 \cdot 10^{20}$

Cosmic Rejection

Cosmic Rejection

...to improve cosmic background rejection without saturating the DAQ, additional "**out-of-time**" **triggers** are collected:

- * using a tighter PMT-Mj condition in a 2 ms window around the BNB / NuMI beam spills;
- * when fired, 10 μs **PMT waveforms** are readout in the corresponding cryostat (180 PMTs), to tag crossing cosmics.

As of the latest physics runs:

- * from Mj-10 in Run1, the requirements are lowered to Mj-7 in the latest physics runs (Run3): cosmic background rejection using light can be sensibly **improved**;
- * the "out-of-time" trigger rate in Run3 is ~10 kHz, approaching the physical rate for cosmic rays at the surface.

A "flash" is a cluster of

Cosmic Rejection

Cosmic rejection can be enhanced also through precise interaction timing:

- * the trigger provides timestamping with o(25 ns) resolution;
- * the proton-bunches **sub-structure** of the beams can be reconstructed <u>with light only</u> with o(3 ns) resolution, using the average rise-time of the first PMTs in the two side-by-side TPCs;
- * **PMTs** are calibrated with < 1 ns precision, the hardware trigger time jitter is removed by using signals from Fermilab accelerators and the time of flight is corrected by using the weighted-average position of fired PMTs;
- * a time-based cut in-between neutrino bunches is being developed to reject cosmics (and select neutrinos or BSM signals).

Study of the Trigger Performance

The trigger efficiency is studied with **cosmic muons**:

- * using off-beam **minimum bias** data, collecting all the gates independently of the presence of scintillation light;
- * time is assigned to cosmic ray particles with the **CRT**, matching in space hits on the scintillators with tracks in the TPCs;
- \star the trigger logic is **emulated**, starting from the collected PMT waveforms.

Muons **stopping** in the detector fiducial volume are selected:

- * stopping muons are in topology and energy similar to BNB charged-current v_{μ} interactions;
- \star their energy can be precisely measured from the residual range;
- * selection is based on topology and calibrated* calorimetry (Bragg peak).

Time μ Βι

Coll. wires

*arXiv:2407.12969

The Run2 trigger **efficiency** saturates at ~300 MeV (muon energy reconstructed from range):

- in Run2, we request at least 5 PMT-pairs in one of five overlapped 6 m-windows;
- * most of **BNB** charged-current interactions occur where the trigger is fully efficient (also from **NuMI**, at higher energies).

This result only relied on **cosmic** stopping **muons**:

- * for these, we reconstruct the energy precisely and easily;
- neutrinos have a different topology, developing longitudinally (based on MC, efficiency would be 15% higher < 200 MeV);
- * systematic uncertainties are being finalized ($\sim 10\% < 200 \text{ MeV}$).

Adders

"Adder" electronic boards were recently introduced for a complementary trigger system:

- signals from 15 contiguous PMTs (in a 3-m longitudinal window) are split into 95%/5% components;
- 2. the 95% components are digitized and used for triggering with the usual PMT-Majority logic;
- 3. the 5% components from 15 contiguous PMTs are summed up analogically.

An **Adder trigger** is fired when there is <u>at least one Adder</u> <u>signal</u> going over threshold:

- * can recover lower-energy events closer to the PMTs, where fewer PMTs collect more light;
- * adders, based on **collected** light, are **complementary** to the multiplicity-based logic of the PMT-Majority trigger.

Plenty of light, high multiplicity.

PMTs behind anode

Plenty of light, lower multiplicity.

The trigger was **upgraded** for Run3 (Mar. 2024 – Jul. 2024), introducing the Adders in **OR** with the improved PMT-Majority logic:

- * Adder trigger: at least one Adder signal above a 50 mV threshold;
- * PMT-Majority trigger: the threshold was lowered from 5 to 4 PMT-pairs for collecting beam events, to further improve the efficiency;
- \star the two trigger sources can be **distinguished** at hardware level.

Looking at the Run3 trigger time profiles:

- * lots of **neutrinos** were collected with the Adders, on top of the wellperforming PMT-Majority trigger;
- ★ Adders alone are responsible for ~8 10% of the triggers, further improving the trigger efficiency at low energy.

* The **SBN** program at Fermilab aims at definitively resolving the sterile neutrino puzzle, using short-baseline LArTPC detectors along the BNB;

* **ICARUS** (SBN far detector) just completed its third physics run, collecting > 4 (6) \cdot 10²⁰ POT with BNB (NuMI);

* The ICARUS **trigger**, based on the multiplicity of PMTs, was **characterized** with cosmic muons and is fully efficient > 300 MeV;

* A **complementary** system based on the analog sum of light signals was developed and **implemented**, showing promising results.

Conclusions

* The **SBN** program at Fermilab aims at definitively resolving the sterile neutrino puzzle, using short-baseline LArTPC detectors along the BNB;

*** ICARUS** (SBN far detector) just completed its third physics run, collecting > 4 (6) \cdot 10²⁰ POT with BNB (NuMI);

* The ICARUS **trigger**, based on the multiplicity of PMTs, was **characterized** with cosmic muons and is fully efficient > 300 MeV;

* A **complementary** system based on the analog sum of light signals was developed and **implemented**, showing promising results.

Backup

a f

Liquid Argon Time Projection Chamber

ICARUS Timeline

Sept. 3, 2024

ICARUS at the Fermilab Short-Baseline Neutrino program: initial operation. *Eur. Phys. J. C* 83, 467 (2023).

Riccardo Triozzi – ICNFP 2024

(Unbiased) Cosmic Muon Timing

Neutrino events are collected (by design) \underline{at} the trigger time.

For **cosmic muons**, timing is not trivial:

- to avoid biasing the trigger efficiency estimation, <u>PMTs</u>
 cannot be used for timing (as one would do normally);
- the <u>TPC</u> can be used for timing from charge <u>only</u> for cathode-crossing tracks, using stitching at the cathode (μstime resolution, orientation bias for the selected tracks, dependent on detector effects);
- * the <u>CRT</u> provides a fast and precise determination of cosmics' crossing times.

Timing with **TPC** for cathode-crossers

Trigger Efficiencies

