XIII International Conference on New Frontiers in Physics 2024

Contribution ID: 35 Type: Talk

Performance of the ICARUS Trigger System at the Booster and NuMI Neutrino Beams

Tuesday 3 September 2024 12:00 (20 minutes)

The ICARUS-T600 liquid argon time projection chamber (LArTPC) detector is taking data at shallow depth as the far detector of the Short Baseline Neutrino program at Fermilab, to search for a possible sterile neutrino signal at $\Delta m^2 \approx 1 \text{ eV}^2$ with the Booster (BNB) and Main Injector (NuMI) neutrino beams at ~ 0.8 GeV and ~ 2 GeV average energies respectively.

The ICARUS trigger system exploits the coincidence of the BNB and NuMI beams with scintillation light signals detected by 360 8" photo-multiplier tubes, and is based on a PMT-multiplicity within 6-m TPC regions along the beam direction, where tpyical neutrino interactions are expected to be contained.

The trigger efficiency measurement leverages cosmic ray minimum-bias data, collected without imposing any scintillation light requirement, and the timing from an external cosmic ray tagger system.

The efficiency measured with stopping muons saturates at $E_{\mu} \approx 300$ MeV, covering most of the BNB and NuMI charged-current neutrino interactions.

For the latest ICARUS run, special *adder* boards, performing the analog sum of light signals, were introduced as a complementary trigger to possibly recover low-energy neutrino interactions.

Finally, the ns-scale timing resolution on the interaction times allows to reconstruct the bunched structures of the BNB and NuMI beams, with the aim of introducing an off-line time-based trigger to cut cosmogenic background in-between beam bunches.

Internet talk

No

Is this an abstract from experimental collaboration?

Yes

Name of experiment and experimental site

ICARUS

Is the speaker for that presentation defined?

Yes

Details

Riccardo Triozzi, University of Padova & INFN Padova, Italy, https://www.pd.infn.it/it/

Primary author: TRIOZZI, Riccardo

Presenter: TRIOZZI, Riccardo

Session Classification: High Energy Particle Physics

Track Classification: Main topics: High Energy Particle Physics