Dark Matter Particle Explorer (DAMPE)

Results after 8 years in Space

Paul Coppin on behalf of the DAMPE collaboration

Part I: The Dark Matter Particle Explorer (DAMPE)

The DAMPE experiment

- Also called Wukong
- Satellite launched in December 2015
- Sun-synchronous orbit (Altitude - 500 km, Period - 95 minutes, Oriented toward zenith)
- Records $\sim 5 \times 10^6$ events per day
- Large effective area and deep calorimeter (32 radiation lengths)
 - Electrons / photons:
 5 GeV to 10 TeV ; acceptance ~0.3 m² sr
 - CR ions: 10 GeV to ~500 TeV; acceptance ~ $0.1 \text{ m}^2 \text{ sr}$

Collaboration between:

China

- Purple Mountain Observatory, CAS, Nanjing
- University of Science and Technology of China, Hefei
- Institute of High Energy Physics, CAS, Beijing
- Institute of Modern Physics, CAS, Lanzhou
- National Space Science Center, CAS, Beijing

Switzerland

University of Geneva

Italy

- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN-LNGS and Gran Sasso Science Institute
- INFN Lecce and University of Salento

+

The cosmic-ray spectrum

- DAMPE trigger rate of 60 Hz from CRs
- Broken power law:
 - $dN/dE \sim E^{-2.7}$
 - Knee & 2nd knee: Maximal energy attainable by Galactic sources (for proton & iron)
 - Ankle: Extragalactic sources
- Particle content:
 - Mostly proton, heavy ions
 - Electrons, photons
 - Anti-matter: positron, anti-proton, ...

The cosmic-ray spectrum

- DAMPE trigger rate of 60 Hz from CRs
- Broken power law:
 - $dN/dE \sim E^{-2.7}$
 - Knee & 2nd knee: Maximal energy attainable by Galactic sources (for proton & iron)
 - Ankle: Extragalactic sources
- Particle content:
 - Mostly proton, heavy ions
 - Electrons, photons
 - Anti-matter: positron, anti-proton, ...

CR physics with satellite experiments

- Space-borne experiments sensitive up to PeV
 → Just below the knee → Supernova remnants
- Spectrum depends on:
 - Production at the source
 - Attenuation/spallation during propagation
- Currently challenges include explaining:
 - Extensive spectral features below PeV
 - PeV energies in the classic SNR paradigm
- Dark matter searches, gamma-ray astronomy, solar physics, particle physics, etc.

Crab N. in X-ray (seen by Chandra)

The DAMPE experiment

• Layered design with 4 sub-detectors:

- Plastic Scintillator Detector (PSD)
 → Charge measurement primary CR
- Silicon-Tungsten tracKer-converter (STK)

 → Measures track & charge primary CR
 → Converts photons into EM shower
- Calorimeter (BGO)
 → Measures shower energy deposition
- NeUtron Detector (NUD)
 - → Differentiate EM from hadronic showers

Calibration

- Angular (pointing):
 - Using photons from pulsars and AGN
 - Point-Spread Function (PSF) 0.3 deg @ 10 GeV
- Energy through beam tests:
 - At CERN PS & SPS
 - Electrons (protons): few GeV up to 250 (400) GeV
 - Ions: 40 GeV/n & 75 GeV/n
- Energy on orbit:
 - Using geomagnetic cut-off
 - Linearity BGO verified up to 2.5 TeV for electrons and 100 TeV for nuclei

doi: 10.1134/S106377882113007X

8

Part II: Latest Results by DAMPE

Results: Gamma-rays

- >300 sources detected
- Measurement of Fermi bubbles
- Galactic center excess
- Online data release:
 - <u>https://dampe.nssdc.ac.cn/dampe/dataquerys.php</u>
 - <u>http://dgdb.pmo.ac.cn/dampe/example.php</u>
- Gamma-ray line searches:
 - Search for decaying dark matter
 - E_{γ} : 5 \rightarrow 450 GeV
 - Strongest upper limits on DM decay lifetime below 100 GeV!

doi: 10.22323/1.395.0640

doi: 10.1016/j.scib.2021.12.015

- Electron/positron flux:
 - Hardening at ~50 GeV
 - Break at 0.9 TeV
- Extending to 10 TeV:
 - 1:20.000 signal-to-background ratio
 - New ML background rejection tools under development
 - CRE lose energy due synchrotron radiation → TeV sources within ~1 kpc

- Proton & Helium flux:
 - Direct measurements up to ~100 TeV
 - Z dependent features
- Proton + Helium:
 - Extends to 0.5 PeV
 - Hardening at ~150 TeV
 - Connect to ground-based experiments
- Interpretation:
 - No single power law for spectrum up to the knee
 → New class of sources?
 - \rightarrow Propagation effect?

- Carbon, Nitrogen, and Oxygen:
 - CR primaries (like proton & helium)
 - Confirmed spectral hardening @ several hundred GeV/n
 - Also combined CNO analysis

Results: BSM searches

- Searches for Fractionally Charged Particles (FCPs):
 - Most stringent results in space for GeV fluxes! (ground-based experiments >100 GeV)

Results: Cross Sections

- Measure: inelastic hadronic cross section
- Proton & ⁴He on $Bi_4Ge_3O_{16} \rightarrow$ Improve hadronic models + CR flux!
- First measurement for ⁴He nuclei at these energies!
- Extend measurement to carbon, oxygen, etc.

Paper submission in progress!

Conclusions

- DAMPE in stable operation since December 2015
- CR measurements from GeV PeV
- Many interesting results:
 - CR fluxes: proton, He, B, C, O, Fe + secondary/primary flux ratios
 - Gamma-ray astronomy and DM searches
 - Particle physics: Cross sections & FCP
 - Heliospheric Physics: Forbush decrease ; CR anisotropy

Thank you for your attention!

Extra material

Layered design with 4 sub-detector

1. Plastic scintillator \rightarrow identify absolute charge of particle

Latest Results by DAMPE

- 82 bars in 2 double layers
- Overall efficiency ≥ 0.9975
- Particles lose energy through ionisation: $dE/dx \propto Z^2$

2. Silicon-Tungsten Tracker Converter

- 768 sensors of 768 strips each
- ~50 micron positional resolution
 → 0.1-1° pointing (electrons & photons)
- Tungsten layers for conversion $\gamma \rightarrow e^+e^-$
- Also charge identification

PoS(ICRC2023)670

3. Calorimeter

- 308 bars spread over 14 layers
- Readout by PMT at each end of crystal
- Bi₄Ge₃O₁₂ material (~1052 kg)
- Energy resolution:
 - ~1% for electrons (shower contained)
 - ~40% for ions (shower not-contained)

4. Neutron detector

- 4 boron-doped plastic scintillators
- $B_{10} + n \rightarrow Li_7 + \alpha + \gamma$
- Hadronic showers produce ~10 times more neutrons than EM showers
- Provides additional discrimination in electron analyses to reject dominant proton background (at 1 TeV, proton background dominantes by $> 10^4$)

Simulation models

- Geant4 version 4.10.5
- FLUKA version 2011.2X.7
- Downgoing particle sampled in 'half-sphere' around detector
- Simulated energy spectrum per decade: $\frac{dN}{dE} \propto E^{-1}$
- Weighted to measured proton & helium spectra

Results: CR anisotropy

- Anisotropy not yet observed with space-based CR experiments
- Main sensitivity >100 GeV
- Upper limit on dipole: $\delta < 1.2 \times 10^{-3}$

Results: Heliospheric Physics

- Polar orbit + large acceptance \rightarrow precise measurement $\Phi_e(t)$
- Forbush Decrease (FD):
 - Coronal Mass Ejection (CME) followed
 by rapid decrease in CR intensity
 - New feature! Energy dependence of recovery time related to CME orientation

doi: 10.3847/2041-8213/ac2de6

DARK MATTER DAMPE MATICLE EXPLORER

- Iron (primary):
 - Up to 10 TeV/n
 - Hardening around 1 TeV/n

• All particle spectrum:

- Compare with indirect experiments
- Extend measurement to ~0.8 PeV

- Cosmic-ray secondaries:
 - Secondary/secondary ratio is constant
 - Secondary/primary has break at ~100 GeV/n
 → Change of CR diffusion coefficient?

Geant4-FLUKA to data comparisons

- Beam-tests at CERN-PS/SPS before launch
- Compare simulated vs measured deposited energy
- Geant4 generally better agrees with data than FLUKA

doi: 10.1016/j.nima.2023.168470

Geant4-FLUKA to data comparisons

- Beam-tests at CERN-PS/SPS before launch
- Compare simulated vs measured deposited energy
- Geant4 generally better agrees with data than FLUKA

doi: 10.1088/0256-307X/37/11/119601

Electron – proton separation

- Low energy:
 - Proton showers are long and thick
 - Electron showers are thin and contained
- High energy (multi-TeV):
 - Some proton showers look almost like electrons
 - Background explodes using conventional algorithms

'low' energy events

Particle ID based on shower-shape:

Electron – proton separation

- Similar approach to before was tested
 → Train CNN on image of tracker and calorimeter
- Alternative: 'Multi Layer Perceptron' (MLP) network
 - Deep learning network
 - Based on high-level variables

Similar performance to CNN, but less requires less optimisation, i.e. less sensitive to data-MC disagreement

doi: 10.1088/1748-0221/16/07/P07036