The $v_3^{1/3}/v_2^{1/2}$ ratio in PbAu collisions at sqrt(s_{NN}) = 17.3 GeV

Jovan Milošević University of Belgrade Vinča Institute of Nuclear Sciences, Serbia

- CERES/NA45 experiment
- \diamond v₂ and v₃ magnitudes
- Hydro probes $v_n^{1/n}/v_2^{1/2}$ vs p_T (n=3,4,...)
- Conclusions

Motivation

T-µ_B phase diagram of nuclear matter

- ✤ QGP discovered at high T (~170 MeV) and low µ_B (~0) at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) – corresponds to the early Universe
- QCD phase structures (first-order phase transition, critical point) should exists in high density regime – could correspond to some astrophysical objects and some exotic states

Theoretical models to descibe HI evolution and QGP

Hadronic cascade

- Ultra relativistic Quantum
 Molecular Dynamics (UrQMD)
 Quark Gluon String Model
 (QGSM)
- A Multi Phase Transport Model (AMPT)
- Jet AA Microscopic Transport Model (JAM)

ا

Relativistic liquid

- Hydrodynamics model (iEBE-VISHNU)
- HYDrodynamics plus JETs (HYDJET++)

۰...

Hybrid models

VHLLE viscous + SMASH

-Models are not universal. Dependence of different collision energies (range Mev to TeV) -To check different observables to make possible distinction between different models -Could something be done independently of the models?

28.08.2024

In hydrodynamics, at $p_T < 2$ GeV/c, the $v_n(p_T)$ behave as power-law functions of p_T [Phys. Rev. C 82 (2010) 034913, arxiv:nucl-th/1007.5469 & Phys. Lett. B 642 (2006) 227, arxiv:nucl-th/0506045].

This can be expressed as $v_n(p_T) = c_n p_T^{n/m}, n = 2, 3, ...$

where c_n is a coefficient of proportionality that depends on the order *n*, and *m* is a fixed number independent of *n*.

In this case, the ratio $v_3^{1/3} / v_2^{1/2}$ becomes a p_T independent number $c_3^{1/3} / c_2^{1/2}$

The ratio depends on centrality.

Similar scaling ratios $v_n^{1/n} / v_2^{1/2}$, *n*>2, as a function of centrality, have been already measured at RHIC and LHC

This is a model independent hydro check!

CERES/NA45 experiment

Anisotropies from the CERES/NA45 at the SPS in PbAu collisions

Multiplicity distribution from the CERES/NA45 at the SPS in PbAu collisions

TPC track density for the trigger mix within (0 - 30%) centrality. The mix consists of three components: minimum-bias (0.5%), semicentral (8.3%), and central (91.2%), where the parentheses represent the percentage fractions in the mix.

v_n magnitudes

Azimuthal anisotropy

 Ψ_n (angle of nth-order flow symmetry plane)

v_n – Fourier harmonics depend on

- initial state geometry
- initial state fluctuations
- medium transport properties (e.g. η/s)

$v_n = \left\langle \cos[n(\phi - \Psi_n)] \right\rangle$

Event-by-event v_n distributions are not Gaussian-like

v_2 and v_3 p_T dependence

- **CERES** NA/45 experiment
- PbAu collisions at 17.3 GeV
- Two the most central classes up to 20% centrality
- Realistic multiplicity dependence (from vHLLE)
- PID: π⁻, 2.05<η < 2.7,
 0.05 < p_T < 2.2 GeV/c
- At low collision energy, v₂ is significantly lower wrt LHC energy
- v₃ is also lower than at the LHC energy
- Multiplicity goes up to 250 tracks of charged particles
- At higher p_T, VHLLE+SMASH overpredicts the v₂ data

v_3 in comparison with v_2

- Elliptic flow reflects the initial anisotropy and thus depends strongly on centrality Triangular flow comes from the Initial State Fluctuations and weakly depends on * centrality
- The different centrality behavior between v_2 and v_3 is observed from the ** corresponding p_T dependencies
- For very central collisions ($\langle \sigma / \sigma_{qeo} \rangle = 2.4\%$), v₃ becomes close to the v₂ **

Triangular flow is dominant ∻ anisotropy for ultra-central collisions at the LHC energies

CMS

Systematic errors for the v_3 are very similar to \diamond those found for the mean centrality of 5.5%

v_3/v_2 vs energy

- Relatively good agreement between top SPS and 19.6 GeV RHIC data
- Maximum at the top RHIC energy
- With increasing the energy, due to a faster increase of the elliptic flow wrt the triangular flow, the v3/v2 decreases

Hydrodynamic prediction

- Ratio $v_3^{1/3}/v_2^{1/2}$ should be p_T independent
- ✤ A rather good agreement with ALICE and ATLAS results
- ✤ Increase at small p_T probably due to not completely removed HBT contribution
- It shows that even at the SPS energy hydrodynamics works
- Could we expect similar behavior at the NICA top energy too?

Submitted to EPJC

Hydrodynamic prediction

- The SMASH-vHLLE model prediction tends to stay slightly below the experimental data.
- This is due to the fact that the model overestimates the experimentally measured v₂ somewhat for p_T > 0.7 GeV/c, while it reproduces v₃ harmonics.
- The choice of initial state and η/s value for hydrodynamic evolution is very important. This measurement could help to better constrain them.

Submitted to EPJC

SMASH only v₂ prediction

Up to 1 GeV/c, the SMASH model prediction tends to stay slightly below the experimental data, and even more below the SMASH-vHLLE prediction
 In general, microscopic models have a tendency to be below hydro models

ICNFP 2024

SMASH only v₃ prediction

• The SMASH model alone prediction gives a very small, but negative v_3

- It seems that only with a hydro evolution (as the main part of the evolution), followed by the SMASH model can reproduce the experimental v₃ data
- ✤ In this case, the ratio $v_3^{1/3}/v_2^{1/2}$ cannot be calculated at all

ICNFP 2024

Conclusions

- Hydrodynamics probe as a ratio v₃^{1/3}/v₂^{1/2} has been performed on PbAu collisions at 17.3 GeV collected by CERES/NA45 Collaboratiion at the SPS
- Different hydrodynamics predictions for the v₂ overpredict the experimental SPS data
- The ratio v₃^{1/3}/v₂^{1/2} as a hydrodynamics probe is model independent
- The probe shows that matter created at top SPS energy behaves hydrodynamically
- The results could help theoreticians to adjust their models to reproduce the v₂ flow experimental data
- Also, the SMASH model only prediction gives v₂ slightly smaller than the experimental one, while v₃ is quite small, but negative, that makes calculation of the ratio v₃^{1/3}/v₂^{1/2} impossible

Backup

SMASH only v₃ prediction

• The SMASH model alone prediction gives a very small, but negative v_3

- It seems that only with a hydro evolution (as the main part of the evolution), followed by the SMASH model can reproduce the experimental v₃ data
- ✤ In this case, the ratio $v_3^{1/3}/v_2^{1/2}$ cannot be calculated at all

