Highlights from pp collisions

<u>atailas</u>

Stefano Passaggio

INFN, Sezione di Genova

EXPERIME

on behalf of the ATLAS collaboration

Outline

- ATLAS
- SM: furthering the precision frontier
- HIGGS: sharpening the precision, seek for rare processes
- HIGGS: explore enlarged scenarios
- BSM1: desperately seeking SUSY
- BSM2: the quest for Exotica
- Outlook
- Disclaimer
 - Hard choice, given the wealth of the harvest
 - Focus on recent results, and on breadth of fields
 - Many additional extremely interesting results available (older, but also fresh): <u>see topical ATLAS talks at this Conference</u>

Standard Model Furthering the precision frontier

arXiv:2403.15085

Improving the understanding of fundamental parameters

- First measurement of the W width at the LHC, together with an improved W mass
 - Largest systematics from the calibration, the theoretical modeling and the parton density functions

Dedicated measurements under optimal running conditions can play a key role to improve these limitations

arXiv:2403.15085

Improving the understanding of fundamental

parameters

- First measurement at the LHC, toget improved W mase
 - Largest systema calibration, the t and the parton d

ATLAS precision on m_W exceeding that on other SM heavy particles by ~1/10

 $\begin{array}{c} {\rm 0.02\% \ on \ m_W} \\ {\rm 0.2\% \ on \ m_t} \\ {\rm 0.09\% \ on \ m_h} \end{array}$

nents under optimal an play a key role to e limitations

SM prediction for m_w based on m_z (measured much more precisely elsewhere)

Check of lepton universality in W decays

- Exploits clean W bosons from top-pair decays
- Higher precision than current world average

•
$$R_W^{\mu/e} = 0.9995 \pm 0.0045$$

This adds to a previous result with taus, solving a decade old puzzle from LEP

7

Higgs Boson Sharpening the precision and seek for rare

ATLAS-CONF-2024-010

The beauty and the charm of the Higgs boson

• Probing Yukawa couplings in the quark sector is a cornerstone of the experimental program of LHC

• <u>Goals</u>

- measurements of VH Higgs production with decays into bottom quarks
- direct constraints on the charm Yukawa coupling with full Run2 statistics

The only accessible second-generation quark Yukawa coupling

Important check of the Higgs mechanism but currently very large uncertainties

ATLAS-CONF-2024-010

The beauty and the charm of the Higgs boson

• Probing Yukawa couplings in the quark sector is a cornerstone of the experimental program of LHC

• <u>Goals</u>

1st Obs!

- measurements of VH Higgs production with decays into bottom quarks
- **direct constraints on the charm Yukawa coupling** with full Run2 statistics
- Individual production of WH and ZH with H → bb is established with observed (expected) significances of 5.3 (5.5) and 4.9 (5.7)

This new legacy V(lep)/H(bb,cc) improves and combines previous results: <u>V(lep)/H(cc)</u>, <u>V(lep)/H(bb)</u>, <u>boosted V(lep)/H(bb)</u>

- Better Flavor Tagging (MV2 to DLr1: EPJC 63 (2023) 681) and dedicated WP optimizations
 - Introduced BDT discriminant for VH(cc) and VH(bb) boosted
 - New MC samples (JHEP 08 (2022) 89) with much higher stat and dedicated treatment of "truth-tagging"
 - Increased statistics of alternative generators using CARL (arxiv:1506.02169)
- Inclusion of additional analysis regions (e.g. 75-150 pTV in 1L), improved mass resolution

ATLAS-CONF-2024-010

Obs and exp 68% and 95% CL

Will we be able to find evidence of the charm Yukawa coupling during the lifetime of LHC?

Rapid progress in techniques: major driver of sensitivity increases BDTs → feed-forward DNNs → Graph NNs, transformer networks...

arXiv:2407.10904

Higgs production in association with top quarks

n

- Direct probe of top Yukawa coupling
- Refined reconstruction and calibration of physics objects (in particular: b-jets)
- Improved description of top-quark background processes
- Advanced neural network used to classify the selected collision events

	ATLAS	Total Unc.	Syst.	. only	Stat. only	 SM + Th	ieory	
	$\sqrt{s} = 13 \text{ TeV},$	$140 \text{fb}^{-1}, \text{m}_{\text{H}} = 125.$.09 GeV	Total	(Stat.	Syst.)		ę
$p_T^H \! \in \! [0, 60) \text{ GeV}$	- 14		1.25	+ 0.69 - 0.65	+ 0.52 - 0.51	+ 0.46 - 0.40	_	
o ^H ∈[60, 120) GeV	- +		0.77	+ 0.54 - 0.52	+ 0.41 - 0.40	+ 0.35 - 0.32	_	
^H ∈[120, 200) GeV	- 🛏		0.88	+ 0.46 - 0.43	+ 0.34 - 0.33	+ 0.31 - 0.28	_	g
^H ∈[200, 300) GeV	- 1		0.77	+ 0.44 - 0.42	+ 0.36 - 0.35	+ 0.26 - 0.24	_	
^H ∈[300, 450) GeV	- +===+(0.27	+ 0.55 - 0.54	+ 0.44 - 0.42	+ 0.33 - 0.33	_	
p _T ^H ∈[450,∞) GeV	- F		0.63	+ 0.89 - 0.83	+ 0.76 - 0.71	+ 0.47 - 0.43	_	(
Inclusive	- , 🖷		0.81	+ 0.20 - 0.18	+ 0.11 - 0.11	+ 0.17 - 0.15	_	
	0	1 2	3	4	5	6		
σ _{tīH} /σ							σ SM	
Total uncertainty improved							ents	
Totat		400/			vou		ъ́	E √
by ~40%								- 1 - S
								Lo5 P
		1 A A A A A A A A A A A A A A A A A A A					-	10°E.
	4.6 σ	observ	ved					
(*	<mark>4.6 σ</mark> 2x prev	<mark>observ</mark> vious n	ved	ls)				
()	<mark>4.6 σ</mark> 2x pre\	<mark>observ</mark> /ious n	ved nea	is)			-	10°
(Inclusi	<mark>4.6 σ</mark> 2x pre\ ve and	observ /ious n	ved nea	ns)	in n ^t	ł_	-	10°
(Inclusi	<mark>4.6 σ</mark> 2x prev ve and	observ /ious n differe	ved nea enti	ial i	in p [⊦]	ł T		10 ⁴
(Inclusi v	<mark>4.6 σ</mark> 2x pre\ ve and ria STX	observ /ious n differe S form	ved nea enti alis	ial iali sm	in p [⊦]	ι Τ		10°
() Inclusi V (only t	<mark>4.6 σ</mark> 2x prev ve and ria STX3 tH cha	observ vious n differe S form nnel to	ved nea enti alis	ial i sm	in p ^r h p ^H	н Т	- Bkgd	10 ⁴
() Inclusi V (only t	<mark>4.6 σ</mark> 2x prev ve and ia STX tH cha	observ vious n differe S form nnel to	ved nea enti alis o re	ial i sm acl	in p [⊦] h p ^H	ι Τ	ata / Bkgd	10 ⁴ − 10 ⁴ − 10 ³ − 1.3 − 1.2 − 1.1 − 1.4 −
() Inclusi v (only t	4.6 σ 2x prev ve and via STX tH cha above	observ /ious n differe S form nnel to 450 G	ved nea enti alis o re GeV	ial i sm acl	in p [⊦] h p ^H	¹ Τ Τ	Data / Bkgd	10 ⁴ 10 ⁴ 1.3 1.2 1.1 1.2 0.9 3
() Inclusi V (only t S. Passa	4.6 o 2x prev ve and ia STXS tH cha above	observ vious n differe S form nnel to e 450 G	ved nea enti alis o re GeV	ial i sm acl	in p ^r h p ^H	¹ Τ Τ	Data / Bkgd	10 ⁴ 10 ⁴ 1.3 1.2 1.1 1.2 1.1 1.4 1.4 1.4

Observed and expected event yields as function of the ratio of post-fit signal (S) and total bkg (B) yields

8/30/2024

Where can we go: Precision Top for precision Higgs

- Measurement of $t\bar{t}$ + heavy flavor
 - extensive measurements for improved theory modeling
- Precision 10% achieved on several observables
- Good agreement with $t\overline{t}b\overline{b}$ MC
- Huge amount of precious information for MC authors
- Important result to help further improve measurement like $t\bar{t}H$

S. Passaggio - ICNFP 2024

New combined search for di-Higgs production

- Approaching SM prediction for HH production cross section
- Many production (ggF + VBF) and decay channels explored
 - Some new
 - Significant improvements in previously explored ones
- Best expected sensitivity on HH cross section, self-coupling, κ_{λ}

Observed and expected 95% CL UL's on HH signal strength μ_{HH}

Higgs Boson / Looking beyond Search for extended Higgs sectors

arXiv:2407.10798

Search for singly and doubly charged Higgs in VBF

- Charged Higgs bosons predicted in extended Higgs sectors with additional complex doublets or higher-isospin scalar fields
- H⁺/H⁺⁺ produced in VBF and decaying into a WZ/WW boson pair (forbidden at tree level in the generic two Higgs doublet model due to CP conservation)
- Benchmark: Georgi–Machacek (GM) model

- Physical scalar states are organised into custodial multiplets (a quintuplet, a triplet and two singlets [including the observed 125 GeV neutral h])
- Focus on the fermiophobic quintuplet, assumed mass degenerate (m_{H_5}) , which couples to vector boson pairs
- A parameter, $sin(\theta_H)$, characterises the contribution of the isotriplet scalar fields to the masses of the W and Z bosons
- Upper Limit on $sin(\theta_H)$ as a function of m_{H_5} both for singly and for doubly charged state (and their combination)
- The largest observed excess is for 375 GeV mass point, where the local (global) significance amounts to 3.3 (2.5) σ

Looking beyond: Desperately seeking SUSY

New Run3!

ATLAS-CONF-2024-011

h

Breaking "R-parity" in new searches for SUSY

- Searching for heavy stops, decaying to a b-quark and a lepton (muon or electron)
 - <u>Signature</u>: two oppositely charged leptons and at least two jets (one of which must come from a b-quark)
 - Enhanced background estimation strategies
 - Optimized fit to the distribution of the mass of the leading lepton-jet pair

JHEP 05 (2024) 003

- Searching for pair-produced gluinos, decaying into multiple quarks either directly or through an intermediate neutralino
 - <u>Signature</u>: multiple jets (6j for direct, 10j for $\tilde{\chi}_1^0$ mediated)
 - Challenges:
 - SM background processes are poorly modeled
 - High number of jets creates a complex combinatorial background
 - Use standard as well as ML-based approaches

- No excess above SM found
 - Direct gluino decay: excluded up to 1800 GeV
 - Cascade gluino decay: excluded up to 2340 GeV for a neutralino with 1250 GeV mass
 - Mass resonance method extends limits compared to jet counting method by ~200 GeV

 $m(\tilde{g})$ [GeV]

22

8/30/2024

Looking beyond: The Quest for Exotica

Search for Vector Like Leptons

- Vector like leptons UV-complete 4321 model
 - VLL favour decays via vector LQ into third generation quarks and leptons
- Signature with multiple τ, b-jets, jets, leptons and EtMiss ⇒Trigger Buckets strategy
- First time that ATLAS probes this model
- Signal regions characterised by the presence of *b*-jets and hadronically decaying tau leptons
- Using neural networks parameterised in the generated mass of the VLL signal

2407.09183

Neutral LLPs decaying into displaced jets

- Three <u>benchmark models</u>
 - Hidden Sector (HS) Model
 - A scalar boson Φ (the Higgs boson, or a lighter or heavier particle that behaves similarly) acts as mediator between the SM and the HS (S)
 - Photo-phobic Axion-Like Particle (ALP) Model
 - ALP (a) radiated from vector bosons and decaying into gluons
 - Long-lived Dark Photon (Z_d) Model
 - The Z_d is produced with a Z in the decay of a scalar mediator

HS

 V^*

2407.09183

Neutral LLPs decaying into displaced jets

- Three topological targets
 - Pair production in which one of the LLPs is resolved into two jets (three jets total)
 - Probes shorter lifetimes and lower boosts wrt previous analysis (arXiv:2203.01009)
 - Production in association with a W or Z boson
 - Can take advantage of higher-efficiency lepton triggers and search for new models such as axion-like particles (ALPs)

2407.09183

Neutral LLPs decaying into displaced jets

- Three topological targets
 - Pair production in which one of the LLPs is resolved into two jets (three jets total)
 - Probes shorter lifetimes and lower boosts wrt previous analysis (arXiv:2203.01009)
 - Production in association with a W or Z boson
 - Can take advantage of higher-efficiency lepton triggers and search for new models such as axion-like particles (ALPs)

- Trigger on either narrow, trackless jets with low ECal energy or leptons
- Data-driven bkg using ABCD method
- Per-jet NN to distinguish signal-like jets from SM jets or beam-induced backgrounds
- No significant excess found
 - New or improved upper limits set in each channel 8/30/2024

Outlook

With its R1*-R2-R3** datasets ATLAS is working full steam toward...

- ... deepening and sharpening our knowledge of SM's fundamental parameters (precision frontier)
- ... contributing to ever improving the control on systematics
 - not only on the experimental side
- ... furthering our knowledge of the Higgs boson sector
 - both on the production and on the decay sides
- ... turning every stone in the quest for BSM physics (search frontier)
 - in SUSY, but also in Exotic scenarios
- ... significantly improving the performance of reconstruction and analysis tools
- $^{\ast}\,$ Still ripe of cutting edge results
- ** Already producing amazing results, while still fast growing in size (see next slide)

And the future is at the same time promising...

 keep exploiting the "older" (but far from stale) datasets, while enlarging the breadth of analyses making use of Run3

• which is growing fast:

30

... and challenging (but also ambitious): HL-LHC

Turn LHC into a veritable Higgs factory

- 400M Higgs bosons in ATLAS & CMS
- precise Higgs coupling measurements
- access to Higgs self interaction
- longitudinal vector boson scattering
- While significantly increase the overall sensitivity to rare & new physics

ATLAS HL upgrades

- high-granularity, high-coverage tracker
- high-granularity timing detector
- muon chambers
- improved trigger
- high-performance software & computing
- deeply embedded machine learning

lTk

Full silicon tracker upgrade with improved granularity, extended coverage, better performance (under much harsher conditions)

