XIII International Conference on New Frontiers in Physics 26 Aug - 4 Sep 2024, OAC, Kolymbari, Crete, Greece

PHENIX Heavy Ion Overview

T. Novák (for the PHENIX Collaboration)

MATE KRC, Gyöngyös, Hungary

26/08/2024 XIII International Conference On New Frontiers in Physics

PHENIX Run History

Accomplished 16 years of operation with 9 collision species and 9 collision energies

Although PHENIX is no longer actively recording data, analysis continues with the primary focus on these most recent data sets.

to smaller systems	
Species	Run Year
Au+Au	2001, 2002, 2004, 2007, 2008, 2010, 2011, 2014, 2016
d+Au	2003, 2008, 2016
Cu+Cu	2005
U+U	2012
Cu+Au	2012
³ He+Au	2014
<i>p</i> +Au	2015
<i>p</i> +Al	2015

Progresses from larger systems

2

Muon Arms

- Rapidity coverage: 1.2<|y|<2.2
- Muon Tracking followed by Muon Identifier
 - Stainless steel and copper absorbers for hadron rejection
- BBC measures collision vertex along beam axis

Central Arms

- Rapidity coverage: |y|<0.35
- Charged particle tracks and momentum pad and drift chambers
- Ring Imaging Cherenkov detector for pion rejection
- Energy / momentum matching of charged particles using EMCal clusters

Small Systems Results

4

CNM Effects

• Gluon Shadowing/Anti-Shadowing:

Modification (suppression/enhancement) of heavy quark cross section due to modifications of the gluon structure function

• Parton Energy Loss:

The projectile gluon experiences multiple scattering while passing through the target before J/ ψ production, reducing the rapidity of the J/ ψ

• Cronin Effect:

Modification of the J/ ψ p_T distribution due to multiple elastic scattering of partons

• Nuclear Break-Up:

The break up of the bound J/ ψ (or precursor state) in collisions with other target nucleons that pass through J/ ψ production point

• Co-Movers Break-Up:

Final state break up of the J/ ψ through interactions with produced partons

26/8/2024

J/ψ Nuclear Modification (2014)

• Forward rapidity: J/ψ suppression similar to open charm suppression

- Consistent with shadowing and/or parton energy loss
- Backward rapidity: J/ψ suppressed relative to open charm
 - Expect open charm enhanced by antishadowing
 - J/ ψ suppression consistent with absorption from collisions with nucleons in target
 - Possible contribution also from co-movers

J/ψ Nuclear Modification (2020)

- Predictions for $p/{}^{3}$ He+Au based on Bayesian reweighting method using J/ ψ constraints from p+Pb data at the LHC
- Added PHENIX nuclear absorption estimate at backward rapidity 26/8/2024

Large Systems Results

8

 J/ψ Suppression puzzle

- $R_{AA}^{Fwd} < R_{AA}^{mid}$, contrary to expectation
- ~20 cc pairs in collisions at RHIC (mostly at mid-rapidity)

Can we attribute this significant difference in $J/\psi R_{AA}$ to regeneration of J/ψ from $c\overline{c}$ pairs at mid-rapidity?

Coalescence as the solution

•
$$R_{AA}^{\text{LHC}} > R_{AA}^{\text{RHIC}}$$

- Greater J/ψ suppression predicted at higher T
- PHENIX J/ ψ shows stronger suppression at both forward and mid-rapidity compared to ALICE

 $J/\psi v_2$ measurement

- PHENIX J/ ψ v₂ at forward rapidity is consistent with zero
- Forward and mid-rapidity results at RHIC are consistent, but the uncertainties are large
- The ALICE nonzero result is different from our measurement
- At RHIC energies, regeneration not as significant

Collectivity in Small Systems

12

Geometry Scan: 3 different shapes

Hydrodynamics (SONIC, LQCD EoS, 1+2d): *Different* initial geometry /energy deposition translated by ∇p to *different* final state momentum space correlations

26/8/202

Flow in Small Systems: Geometric Ordering

 v_2 , v_3 results beautifully consistent with hydro ordering

Collective motion of system translates the initial geometry into the final state

Comparison to Hydro Calculations

- → v₂ Data
- vn SONIC Eur. Phys. J. C 75, 15 (2015)
- v_n iEBE-VISHNU PRC 95, 014906 (2017)
- Both use η/s=0.08, MC Glauber initial conditions, 2+1D viscous hydrodynamic evolution
- Different hadronic rescattering packages

https://www.nature.com/articles/s41567-018-0360-0

Femtoscopy in Au+Au

The HBT-effect in Femtoscopy

- R. Hanbury Brown, R.Q.Twiss observed Sirius with radio telescopes
- R. Hanbury Brown and R. Q. Twiss 1956 Nature 178
 - Intensity correlations as a function of detector distance
 - Measuring size of point-like sources
- Goldhaber et al: applicable in high energy physics: (for identical pions)
- G. Goldhaber et al 1959 Phys.Rev.Lett. 3 181
 - Momentum correlation C(q) is related to the source S(x): $C(q) \cong 1 + |\widetilde{S}(q)|^2$, where $\widetilde{S}(q)$ is Fourier transform of S(q).

Lévy Distributions in Heavy Ion Physics

- Usual assumption that S(r) is Gaussian \rightarrow Gaussian C(q)
- Measurements suggest phenomena beyond Gaussian distribution
- Lévy stable distribution: $\mathcal{L}(\alpha, R; r) = (2\pi)^{-3} \int d^3q e^{iqr} e^{-1/2|qR|^{\alpha}}$
 - From generalized central limit theorem, power law tail ~ r $^{-(1+\alpha)}$
 - Special cases: $\alpha = 2$ Gaussian, $\alpha = 1$ Cauchy

• Shape of the correlation functions with Lévy source:

 $C_2(q)=1+\lambda \cdot e^{-|qR|^{\alpha}}; \alpha=2:Gaussian; \alpha=1:exponential$ Csörgő, Hegyi, Zajc, Eur.Phys.J. C36 (2004) 67 78

• A possible reason for Levy source: criticality, anomalous diffusion, many others

Example Correlation Function

- Fit with calculation based on Lévy distribution
- Physical parameters: R, α , λ measured versus pair $m_{\rm T}$
- R: homogeneity length, dynamics, sizes
- α: shape, criticality, anomalous diffusion
- λ: particle creation mechanisms, in-medium mass modification

Lévy works well

R – Centrality and m_T dependence

D. Kincses, Universe 4 (2018) 11

- Geometrical centrality dependence
- Usual decrease with m_{τ} is present

20

α – Centrality and m_T dependence

D. Kincses, Universe 4 (2018) 11

- Measured value far from Gaussian ($\alpha = 2$), inconsistent with expo. ($\alpha = 1$)
- Far from random field 3D Ising value at CEP ($\alpha = 0.5$)
- Approximately constant (at least within systematic uncertainties)

26/8/2024

λ – Centrality and m_{τ} dependence

- From the Core-Halo model, measure the core-halo fraction: $\lambda = \left(\frac{N_C}{N_C + N_{CT}}\right)^2$
- Observed suppression at small m_{τ} increase of halo fraction

Kaon Femtoscopy in Au+Au

arxiv.org/pdf/2307.09573

- Femtoscopy with K^{\pm} and assuming Lévy source
- $\bullet~\lambda$ describes strength of correlation
- α describes shape of distributions— $\alpha = 2$ is Gaussian, $\alpha = 1$ is Cauchy

 $\mathbf{O}_{26/8/2024} R$ is width parameter (similar to but not same as standard Gaussian radius)

Kaon Femtoscopy in Au+Au

arxiv.org/pdf/2307.09573

- Femtoscopy with K^{\pm} and assuming Lévy source
- λ describes strength of correlation
- α describes shape of distributions— $\alpha = 2$ is Gaussian, $\alpha = 1$ is Cauchy

• R is width parameter (similar to but not same as standard Gaussian radius) $\frac{26/8}{2024}$

Summary

- Large enhancement seen in open heavy flavor decays at backward rapidity
- J/ ψ R_{AA} suppression at backward rapidity consistent with nuclear absorption effects
- Data at forward rapidity suggests little to no coalescence effects
- J/ ψ v₂ measurements consistent with zero (and stronger suppression compared to LHC)
- Strong evidence for QGP droplets in small systems
- New results on femtoscopy with charged kaons

Thank you for your attention!

Back up

Charmonia Nuclear Modification in *p*+Au Collisions

- At forward rapidity, J/ ψ and ψ (2S) modification well described by shadowing models
 - Consistent with cold nuclear matter effects
- At backward rapidity, charmonium modification inconsistent with shadowing effects alone

J/ψ Reconstruction

J/ψ simulated with PYTHIA embedded in Au+Au data

• Obtain Crystal Ball fit parameters

Constructing the signal and fit

- Crystal Ball function (J/ψ)
- Crystal Ball function (ψ (2S))
- Exponential (residual background)

Kaon Lévy shape - α

- Does not exhibit strong dependence on transverse mass
- Kaon α consistent with pions, weak $\alpha(K) \geq \alpha(\pi)$ indication
- Anomalous diffusion suggests

[M. Csanád, T. Csörgő, M. Nagy, Braz.J.Phys. 37 (2007)

Earlier Experimental Applications of Lévy

