Unveiling Neutrinoless Double Beta Decay with the Onext Detectors: Advances, Achievements and Future Prospects

Helena Almazán, on behalf of the NEXT collaboration

The University of Manchester

European Research Council Established by the European Commission XIII International Conference on New Frontiers in Physics 26 Aug - 4 Sep 2024, OAC, Kolymbari, Crete, Greece

Neutrinoless Double Beta Decay

- Observed in several nuclei
- $T_{1/2} = 10^{19} 10^{21}$ years
- $\cdot \Delta L = 0$

Isotopes capables double beta decay:

⁴⁶Ca, ⁴⁸Ca, ⁷⁰Zn, ⁷⁶Ge, ⁸⁰Se, ⁸²Se, ⁸⁶Kr, ⁹⁴Zr, ⁹⁶Zr, ⁹⁸Mo, ¹⁰⁰Mo, ¹⁰⁴Ru, ¹¹⁰Pd, ¹¹⁴Cd, ¹¹⁶Cd, ¹²²Sn, ¹²⁴Sn, ¹²⁸Te, ¹³⁰Te, ¹³⁴Xe, ¹³⁶Xe, ¹⁴²Ce, ¹⁴⁶Nd, ¹⁴⁸Nd, ¹⁵⁰Nd, ¹⁵⁴Sm, ¹⁶⁰Gd, ¹⁷⁰Er, ¹⁷⁶Yb, ¹⁸⁶W, ¹⁹²Os, ¹⁹⁸Pt, ²⁰⁴Hg, ²¹⁶Po, ²²⁰Rn, ²²²Rn, ²²⁶Ra, ²³²Th, ²³⁸U, ²⁴⁴Pu, ²⁴⁸Cm, ²⁵⁴Cf, ²⁵⁶Cf, and ²⁶⁰Fm.

 $2\nu\beta\beta$ rate measured experimentally

Helena Almazán

Neutrinoless Double Beta Decay

- $T_{1/2} = 10^{19} 10^{21}$ years
- $\cdot \Delta L = 0$

 $\cdot \Delta L = 2$

decay process

Next-generation $0\nu\beta\beta$ experiments

Best *BBOv half-life* experimental value (KamLAND-Zen)

[arXiv: 2406.11438]

Helena Almazán

Next-generation $0\nu\beta\beta$ experiments

Best *BBOv half-life* experimental value (KamLAND-Zen)

provides information about absolute neutrino mass and mass eigenstates ordering \rightarrow aim to explore the **IO region**

Next-generation $0\nu\beta\beta$ experiments

Best *BBOv half-life* experimental value (KamLAND-Zen)

$0\nu\beta\beta$ experiments

$0\nu\beta\beta$ experiments

Image: constraint of the constraint o	$I_{1/2}^{\text{[so}} = log 2 \frac{N_A}{W} \frac{e^N}{V}$
PMT of muon veto water tank (Ø 10m, 590m ³)	⁷⁶ Ge
Semiconductor	GERDA-II LEGEND-200 LEGEND-1000 MAJORANA DEMOSTRATOR
Liquid/Gas TPC	
Liquid Scintillators	
Bolometer	
	SSODA Prof of clean room Paster muon veto Paster detector array a Part of muon veto Part of muon veto

[source mass x

- Great energy resolution
- Extremely low background
- Scalability
- number of events
- Onext
- **High Pressure Gaseous Xenon Time Projection Chamber with Electroluminescent Amplification**

Fully active and homogenous detector \rightarrow source = detector Great intrinsic energy resolution in gas

Xe Gas density:

~0.053 g/cm³ - 10bar

~0.079 g/cm³ - 15bar

2

Density, g/cm³

 $E_{\rm r}$ =662 keV

3

 \Box LXe, T=-30^oC

Helena Almazán

Helena Almazán

Helena Almazán

Helena Almazán

Helena Almazán

The Onext collaboration

The Onext programme

The Onext programme

Helena Almazán

The Onext-white (NEW) detector

 Validate technology with a large-scale radio pure detector Background model assessment Demonstrate excellent energy resolution Achieve efficient discrimination between single and double electron tracks

Helena Almazán

The Onext-white (NEW) detector

1792 SENSL SiPMs 1x1 mm2 - 10 mm

Anode ITO surface coated over a silica plate

12 PMTs Hamamatsu

$\beta\beta$ measurement in NEW

 $T_{1/2}^{2\nu} = 2.34^{+0.80}_{-0.46} (\text{stat})^{+0.30}_{-0.17} (\text{syst}) \cdot 10^{21} \text{ yr}$

[JINST 8 (2013) T01002] [JINST 10 (2015) 05, P05006] [JINST 12 (2017) 08, T08003]

Ονββ Almost Background Model Independent

Helena Almazán

The Onext programme

NEXT-100 detector: Energy resolution <1% at Qbb Improve radioactive budget Competitive search of OvßB Prepare for the tonne-scale

• **Currently**: commissioning since May 2024

Helena Almazán

Helena Almazán

• Detector ready for operation in May 2024. It is in stable operation filled with Argon at 4.3 bar, drift field of ~67 V/cm and EL field of ~6.9 kV/cm. • Detector being characterised with **point-like events** = **alpha** particles from 222 Rn. • First Xenon run to be started soon. Keep tuned!

The Onext programme

Helena Almazán

erc

NEXT-HD Baseline Concept

symmetric vertical TPC

with two back-to-back drift regions

- Symmetric design with central cathode
- Xe/He to reduce transverse diffusion
- Barrel instrumented with fiber optics for energy and S1 measurements
- External water tank shielding

new generation of the NEXT detector with the capability to detect the barium ion, based on a molecular fluorescent indicator

new generation of the NEXT detector with the capability to detect the barium ion, based on a **molecular fluorescent indicator**

ERC Synergy-2020 NEXT-BOLD

new generation of the NEXT detector with the capability to detect the barium ion, based on a **molecular fluorescent indicator**

Coincidence signal:

•136Xe atom decays, producing: 2e- and Ba++ ion

ERC Synergy-2020 NEXT-BOLD

new generation of the NEXT detector with the capability to detect the barium ion, based on a **molecular fluorescent indicator**

Coincidence signal:

•136Xe atom decays, producing: 2e- and Ba++ ion

new generation of the NEXT detector with the capability to detect the barium ion, based on a molecular fluorescent indicator

Coincidence signal:

•136Xe atom decays, producing: 2e- and Ba++ ion

 Energy/Tracking side measures the energy of the electrons and reconstructs track *barycentre*

new generation of the NEXT detector with the capability to detect the barium ion, based on a molecular fluorescent indicator

Coincidence signal:

•136Xe atom decays, producing: 2e- and Ba++ ion

- •Energy/Tracking side measures the energy of the electrons and reconstructs track *barycentre*
- •**Ba++ ion** moves (*slowly*) towards cathode \rightarrow detected by chemosensors

Helena Almazán

new generation of the NEXT detector with the capability to detect the barium ion, based on a molecular fluorescent indicator

Coincidence signal:

- •136Xe atom decays, producing: 2e- and Ba++ ion
- •Energy/Tracking side measures the energy of the electrons and reconstructs track *barycentre*
- •**Ba++ ion** moves (*slowly*) towards cathode \rightarrow detected by chemosensors
- •**Ba++** detection: light emission

Helena Almazán

new generation of the NEXT detector with the capability to detect the barium ion, based on a molecular fluorescent indicator

Coincidence signal:

- •136Xe atom decays, producing: 2e- and Ba++ ion
- Energy/Tracking side measures the energy of the electrons and reconstructs track *barycentre*
- •**Ba++ ion** moves (*slowly*) towards cathode \rightarrow detected by chemosensors
- •**Ba++** detection: light emission
- Together with the **electron track** we obtain **delayed coincidence signal** \rightarrow *Background free experiment*

Helena Almazán

new generation of the NEXT detector with the capability to detect the barium ion, based on a molecular fluorescent indicator

Coincidence signal:

- •136Xe atom decays, producing: 2e- and Ba++ ion
- Energy/Tracking side measures the energy of the electrons and reconstructs track *barycentre*
- •**Ba++ ion** moves (*slowly*) towards cathode \rightarrow detected by chemosensors
- •**Ba++** detection: light emission

The viability of microscopy systems capable of imaging individual barium ions in high-pressure xenon gas is demonstrated

• Together with the **electron track** we obtain **delayed coincidence signal** \rightarrow *Background free experiment*

Helena Almazán

demonstrating potential of HPXe-TPC for **Ονββ searches**:

- Energy resolution < 1% at $Q_{\beta\beta}$
- Topology-based background rejection and measurement of the $2\nu\beta\beta$ lifetime

Helena Almazán

Construction finished and in commissioning since May 2024, will demonstrate **low** background level. Competitive search for **0vββ**.

NEXT-White NEXT-100

demonstrating potential of HPXe-TPC for **Ονββ searches**:

- Energy resolution < 1% at $Q_{\beta\beta}$
- Topology-based background rejection and measurement of the $2\nu\beta\beta$ lifetime

Helena Almazán

Construction finished and in commissioning since May 2024, will demonstrate **low** background level. Competitive search for **0vββ**.

× 1.1 ×

NEXT-100

NEXT-White

demonstrating potential of HPXe-TPC for **Ονββ searches**:

- Energy resolution < 1% at $Q_{\beta\beta}$
- Topology-based background rejection and measurement of the $2\nu\beta\beta$ lifetime

next-NEXT phase devoted to the tonne scale detector:

- increasing mass of ¹³⁶Xe beyond NEXT-100 (NEXT-HD)
- achieving 'Higher Definition' by reducing background and increasing granularity

Helena Almazán

Construction finished and in commissioning since May 2024, will demonstrate **low** background level. Competitive search for **0vββ**.

15.00

NEXT-100

NEXT-White

demonstrating potential of HPXe-TPC for **Ονββ searches**:

- Energy resolution < 1% at $Q_{\beta\beta}$
- Topology-based background rejection and measurement of the $2\nu\beta\beta$ lifetime

next-NEXT phase devoted to the tonne scale detector:

- increasing mass of ¹³⁶Xe beyond NEXT-100 (NEXT-HD)
- achieving 'Higher Definition' by reducing background and increasing granularity
- applying **Ba-tagging technology** that is being developed

Helena Almazán

Construction finished and in commissioning since May 2024, will demonstrate **low** background level. Competitive search for **0vββ**.

NEXT-100

NEXT-White

demonstrating potential of HPXe-TPC for **Ονββ searches**:

- Energy resolution < 1% at $Q_{\beta\beta}$
- Topology-based background rejection and measurement of the $2\nu\beta\beta$ lifetime

next-NEXT phase devoted to the tonne scale detector:

- increasing mass of ¹³⁶Xe beyond NEXT-100 (NEXT-HD)
- achieving 'Higher Definition' by reducing background and increasing granularity
- applying **Ba-tagging technology** that is being developed

Helena Almazán

Thanks for your attention!

-

2

40

572.

100 10 1

NEW Energy Resolution

Helena Almazán

NEW Richardson-Lucy Deconvolution

Topological information about the event given by SiPMs position + time

80 - XY

-20

-40

80

100

Diffusion effect

SiPM response

Electrons diffuse while drifting, smearing the image

X (mm)

120 140 160

After deconvolution

- The **smearing** can be described by a **Point Spread Function** (PSF) obtained with ^{83m}Kr events.
- The **Richardson-Lucy** deconvolution uses the PSF to deconvolve the image and remove the smearing.

NEW Richardson-Lucy Deconvolution

NEW Richardson-Lucy Deconvolution

31

Cathode-EL region using meshes

The Onext-100 backgrounds

- The **main background** in NEXT is represented by natural decay series (U, Th) producing ²¹⁴Bi and ²⁰⁸TI.
- The **LSC** provides a **radiopurity** faculty to asses the radioactivity of the **detector materials** (copper, PMTs, boards...).
- Detector will operate in a **airborne-radon-depleted** environment thanks to the radon-abatement system provided by the LSC.
- **Spallation neutrinos** produced by cosmic rays: flux reduced by rock above the detector. Main source are those originating in the detector shielding: *muon veto* is under construction.

The Onext-100 sensitivity

