

#### **Probing hadronic interactions at the highest energies** with the Pierre Auger Observatory

T. Schulz MI, on behalf of the Pierre Auger Collaboration | 29.08.2024

XIII International Conference on New Frontiers in Physics

## <u>Ultra-high-energy cosmic rays</u>

• UHECRs give access to hadronic interactions at energies far above the ones achievable by human-made accelerators

• Extrapolation of hadronic models needed when describing **extensive air showers** 



р

#### **Extensive air showers**

#### <u>Electromagnetic</u>

- from neutral pion decay
- 90% of total energy

#### <u>Hadronic</u>

- **muons** from charged pion decay
- tracer of hadronic component
- **Higher mass primaries** induce showers with **larger hadronic** component and thus **more muons**



#### **The Pierre Auger Observatory**



Location: Malargüe, Mendoza, Argentina



#### Surface Detector (SD)

- 1660 water Cherenkov detectors (100% duty cycle)
- $E > 10^{18.5} \text{ eV} (10^{17.5} \text{ eV}, 10^{16.5} \text{ eV})$

#### Fluorescence Detector (FD)

• 27 telescopes @ 4 sites (15% duty cycle)

•  $E > 10^{18} \text{ eV} (10^{17} \text{ eV})$ 

# **Hybrid detector**

# Calorimetric estimation of E

- Depth of shower maximum  $X_{max}$  (also SD)
  - p-air cross section

<u>SD</u>
Energy estimator via *S*(1000)

- muon production depth
- Risetime
- muon content (from **buried scintillators**)



# Depth of shower maximum

- **Direct** measurement of first and second *X*<sub>max</sub> moments with **FD**
- Extension to higher energies with DNNs & SD measurements
  - Interpretation of  $X_{max}$ moments using  $\ln A$
  - Systematic uncertainties from hadronic interaction models
    - **Tensions** for some models



**1**ΔX



depth X (g/cm<sup>2</sup>)

number of particles

## Measurement of the p-air cross section

- Cross section dependent observable  $\Lambda_{\eta}$
- Tail of  $X_{max}$  distribution dominated by protons
- Glauber theory used to convert p-air to inelastic **pp cross section**



10

[cm²/g]

dN/dX<sub>max</sub>

 $\Lambda_{\rm n} = 55.8 \pm 2.3 \ {\rm g/cm^2}$ 

 $\propto \exp(-X_{\max}/\Lambda_{\eta})$ 

dN

 $\overline{\mathrm{d}X_{\mathrm{max}}}$ 

#### <u>Risetime</u>

• **Risetime**  $t_{1/2}$  as time between 10% and 50% of total signal reached

• Sensitivity to EM and muon component

 Similar trends of estimated ln A, as for X<sub>max</sub> measurements, but absolute estimate differs



8 29.08.2024

Phys. Rev. D 96, 122003 (2017)



# Muon number



## **Fluctuations of muon number**

• Fluctuations in number of muons  $R_{\mu}$ 





- Muon density fluctuations **consistent with expectations**
- **Small effect accumulating** over several interactions

# Hybrid measurement

- Select **simulations with matching FD** profile and compare SD signals
- $S_{\text{resc}} = R_E \, \mathbf{S}_{\text{EM}} + R_{\text{had}} \, R_E^{\alpha} \, \mathbf{S}_{\text{had}}$



Proton Sim

Iron Sim -Data -

 $\chi^2$ /dof (p) = 1.19

 $\gamma^{2}$ /dof (Fe) = 1.21

Energy: (13.8 ± 0.7) EeV

Zenith:  $(56.5 \pm 0.2)^{\circ}$ 

X<sub>Max</sub>: (752 ± 9) g/cm<sup>2</sup>

dE/dX [PeV/(g/cm<sup>2</sup>)]

30

20

10

#### **Modification of the MC** *X*<sub>max</sub> **scale**

- Fit of [S(1000),  $X_{max}$ ] distributions to MC templates
- **Freedom** of primary fractions,  $R_{had}(\theta)$  and  $\Delta X_{max}$



+9

| ${ m R}_{ m had}(m{	heta}_{ m max})$ | 1.4 | <ul> <li>EPOS-LHC</li> <li>QGSJet II-04</li> <li>Sibyll 2.3d</li> </ul> | • EPOS-LHC $ 1\sigma$<br>• QGSJet II-04 $ 3\sigma$<br>• Sibyll 2.3d $ 5\sigma$ |                                                        | • Alleviated "muon<br>problem" with shift<br>of MC X <sub>max</sub> |                                                         | $ \begin{array}{c} 10 \\ 0 \\ 0 \\ 500 \\ 600 \\ 700 \\ 800 \\ 900 \\ 1000 \\ 1100 \\ X \\ (g/cm^2) \end{array} $ |                        |  |
|--------------------------------------|-----|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------|--|
|                                      | 1.2 |                                                                         |                                                                                | • Smaller model<br>differences for mass<br>composition |                                                                     | <b>15% - 25% increase</b><br>of muonic signal<br>needed |                                                                                                                   |                        |  |
|                                      | 1.1 | -                                                                       |                                                                                |                                                        | $R_{ m had}(	heta_{ m min})$                                        |                                                         | $R_{\rm had}(\theta_{\rm max})$                                                                                   | $\Delta X_{\rm max}/($ |  |
|                                      | 1.0 | -<br>-<br>-                                                             |                                                                                | Epos-LHC                                               | $1.15\pm0.01^{+0.20}_{-0.16}$                                       | 1.1                                                     | $6\pm0.01^{+0.14}_{-0.10}$                                                                                        | $22 \pm$               |  |
|                                      |     | -20 -10 (                                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | QGSJet-II-04                                           | $1.24 \pm 0.01^{+0.22}_{-0.19}$                                     | 1.1                                                     | $8\pm0.01^{+0.15}_{-0.12}$                                                                                        | $47^{+2}_{-1}$         |  |
|                                      |     |                                                                         | $\Delta X_{\rm max} / (g/cm^2)$                                                | SIBYLL 2.3d                                            | $1.18 \pm 0.01^{+0.21}_{-0.17}$                                     | 1.1                                                     | $5\pm0.01^{+0.15}_{-0.11}$                                                                                        | $29 \pm$               |  |
| Phys. Rev. D 109, 102001 (2024)      |     |                                                                         |                                                                                |                                                        |                                                                     |                                                         |                                                                                                                   |                        |  |

#### **Outlook**

• **Modification** of different characteristics of hadronic interactions Scintillation detector (SSD)

25

(see talk by Jakub Vicha on 03.09.24) Signal/MIP

• More tests at colliders p-O collisions @ LHC Run 3



- Scintillator surface detector
- Underground muon detector
- Radio antenna
- better discrimination of hadronic signal  $\rightarrow$ (see talk by David Schmidt on 03.09.24)





electrons

**Radio Antenna** 

700

t/ns

#### <u>Summary</u>

- **UHECR** give access to interactions in high energy regions beyond those of human-made accelerators
  - Auger's hybrid detector enables the measurement EM and muon components of EAS
- Auger data offers complementary information on hadronic interaction models with measurement of p-air cross section
- Testing of hadronic interaction models via
  - measurement of  $X_{max}$
  - measurement of muon content
- Improvements in measurement of muon discrepancy
- Further advancements with AugerPrime expected



 $\Delta X_{max}$  / (g/cm<sup>2</sup>

 $R_{had}(\theta_{max})$ 

#### **BACKUP**

# **Backup: Highly inclined events**

- Fit, using **reference muon map** from MC ( $\rho_{\mu, 19}$ )  $\rho_{\mu}(\vec{r}) = N_{19} \ \rho_{\mu,19}(\vec{r};\theta,\phi)$
- Proportionality of average  $R_{\mu}$  to shower energy E

• 30 – 80% deficit in muon density  $@ 10^{19} \,\mathrm{eV}$ 



MC: p OGSJET II-03

 $E = 10^{19} \, \text{eV}$ 

90°