

Scattering and Neutrino Detector at the LHC

SND@LHC status and results

Valeri Tioukov

on behalf of SND@LHC collaboration

Neutrino experiments at CERN

SND@LHC taken data since 04/2022

SHiP proposed in 2015, approved in 2024 SPS beam dump

FASER taken data since 2022

Scattering and Neutrino Detector at the LHC

Veto system

2 (2022 – 2023) / 3 (2024 -) 1 cm thick scintillator planes.

100 m

rock

Off-axis: $7.2 < \eta < 8.4$ Enhances the flux with charm origin.

Target, vertex detector and ECal830 kg tungsten target.Five walls x 59 emulsion layers+ five scintillating fibre stations. $84 X_0$, $3 \lambda_{int}$

HCal and muon system Eight 20 cm Fe blocks + scintillator planes. Last 3 planes have finer granularity to track muons. 9.5 λ_{int}

VETO SYSTEM HADRONIC CALORIMETER AND MUON SYSTEM VERTEX DETECTOR AND ELECTROMAGNETIC arXiv:2210.02784 3 CALORIMETER

SND@LHC physics goals

QCD

- Decays of **charm** hadrons contribute significantly to the neutrino flux in SND@LHC.
 - \Rightarrow Measure forward charm production with ν_{e} s.
 - \Rightarrow Constrain gluon PDF at very small x.

Flavour

- Detection of all **three types of neutrinos** allows for tests of **lepton flavour universality**.
 - Charm parentage leads to partial cancelation of flux uncertainties

Neutrino interactions

- Measure ν interactions in unexplored ~TeV energy range.
- Large yield of v_{τ} will likely double existing data.
 - About 20 events observed by DONuT and OPERA.

Beyond the Standard Model

• Search for **new**, feebly interacting, **particles decaying** within the detector or **scattering** off the target.

Expected neutrino event rates

- Model neutrino production in pp collisions with **DPMJET**.
- Propagation to SND@LHC with **FLUKA** model of the LHC.
- GENIE neutrino interaction model.
- Neutrino interactions in SND@LHC / 250 fb⁻¹:
 - \circ $v_{\mu} + \overline{v}_{\mu}$ charged-current: 1270
 - \circ $v_e + \overline{v}_e$ charged-current: 390
 - \circ v_{τ} + \overline{v}_{τ} charged-current: 30

	Neutrinos in	n acceptance	CC neutrino	interactions	NC neutrino interactions	
Flavour	$\langle E \rangle ~[GeV]$	Yield	$\langle E \rangle ~[GeV]$	Yield	$\langle E \rangle ~[GeV]$	Yield
$ u_{\mu}$	130	$3.0 imes 10^{12}$	452	910	480	270
$ar{ u}_{\mu}$	133	$2.6 imes 10^{12}$	485	360	480	140
ν_e	339	$3.4 imes 10^{11}$	760	250	720	80
$\bar{ u}_e$	363	$3.8 imes 10^{11}$	680	140	720	50
$ u_{ au}$	415	$2.4 imes 10^{10}$	740	20	740	10
$ar{ u}_{ au}$	380	2.7×10^{10}	740	10	740	5
TOT		4.0×10^{12}		1690		555

pp collision data

- **68.6 fb⁻¹** of proton-proton collisions recorded by the electronic detectors in **2022-2023**
 - 97% detector uptime
 - Five emulsion target replacements
 - Keep track density < 4x10⁵ tracks/cm²
 - Limit the exposure to 20fb⁻¹
- Unexpected increase in the muon flux in 2024
 - New strategy for the emulsion target replacement:
 - Instrument only the lower half target with emulsions
 - Exposure limited to 12 fb⁻¹
 - Keep 65% of events
 - **79.9 fb⁻¹** of proton-proton collisions recorded by the electronic detectors up to now
 - Seven emulsion target replacements performed, nine expected

EVENT RECONSTRUCTION

FIRST PHASE: electronic detectors

- Event reconstruction based on Veto, Target Tracker and Muon system
- Identify neutrino candidates
- Identify muons in the final state
- Reconstruction of electromagnetic showers (SciFi)
- Measure neutrino energy (SciFi+Muon)

SECOND PHASE: nuclear emulsions

- Event reconstruction in the emulsion target
- Identify e.m. showers
- Neutrino vertex reconstruction and 2ry search
- Match with candidates from electronic detectors (time stamp)
- Complement target tracker for e.m. energy measurement

Flavor identification by ECC

ECC target

Number of bricks : 20

• walls: 5

• Bricks per wall : 4

Brick surface: 192x192 mm²

- Brick thickness: 78 mm
- o 60 films + 59 W plate

Passive material : Tungsten
Total mass : 830 kg

• Total emulsion surface : 44 m²

Tau neutrino detection in OPERA ECC

Physics Letters B691 (2010) 138

OPERA conditions: Low track density (10/mm²) Low momentum 1-20 Gev

Scanning System: Position resolution 2-3 μm Angular resolution 3 mrad

Enough for OPERA!

SND@LHC: Track density 4000/mm² Momentum O(100) GeV Tracks mainly parallel (beam)

Scanning System resolution become a problem!

Performance of the emulsion detector

complete revision of the calibration and analysis chain in 2024

Reached values for high momentum tracks: Position resolution 0.2 µm (track) Angular resolution 1.5 mrad (segment)

1	ID	Nseg	Mass	P	Chi2/ndf	Prob	Chi2Contrib	Impact
0	160521	10	0.1390	10.00	1.01	1.0000	0.000	0.75
1	170246	7	0.1390	10.00	4.42	0.1559	0.014	0.04
2	174847	5	0.1390	10.00	1.32	0.9799	0.415	0.53
3	193767	29	0.1390	10.00	0.80	1.0000	0.129	0.46

Scanning and reconstruction is ongoing

"one out of five" method used for residuals estimation

Search for $v_{\rm e}$ CC interactions in the emulsion data

Strategy

- Identify regions of high track density in the emulsions.
- Consistent with the expectation of electromagnetic shower development.
- Search for neutral vertices associated to identified showers.

Status

- Electromagnetic shower patterns identified.
- Vertex association ongoing.

Emulsion scanning systems upgrades

Upgraded prototype with new mechanics&control new camera, new objective

9 SS Dedicated to SND@LHC +1(Chile)

Muon neutrino analysis update

y [cm]

• Last year at Moriond, we reported the observation of 8 muon neutrino candidates in the 2022 data, with a significance of 6.8 σ .

New this year

Updated analysis with 2023 data and extended fiducial volume.

Event selection

Fiducial volume

- Reject events in first wall.
 - Previously used only walls 3 and 4.
- Reject side-entering backgrounds.
- Signal acceptance: 18%
 - Up from 7.5%.

Muon neutrino identification

- Large scintillating fibre detector activity.
- Large HCal activity.
- One muon track associated to the vertex.
- Signal selection efficiency: 35%

Bullet C Experiment, CERN Time (GMT): 2023 07:05 05:19:15 Time (

Phys. Rev. Lett. 131, 031802

Updated muon neutrino results

Number of events expected in 68.6 fb⁻¹

- Signal: 19.1± (4.1sist)
- Neutral hadrons: 0.25 ± 0.06

Number of events observed: 32

Muon neutrino event kinematics

• Kinematics of muon neutrino candidates are in agreement with the signal prediction.

0μ neutrino candidates

16

Search for shower-like (0μ) neutrino events

Signal: $\nu_{\rm e} {\rm CC}$ and NC interactions

Fiducial volume

- No hits in the veto detector.
- Reject side-entering backgrounds.
- Signal acceptance: 12%

0μ neutrino event identification

- Large scintillating fibre detector activity.
- Large HCal activity.
- No hits in last two muon system planes.
 - No reconstructable muon.
- Density-weighted number of hits in most active station > $11x10^3$.
 - Optimized for maximum expected significance
- Signal selection efficiency: 42%

Observation of 0μ events in SND@LHC

Upgrades beyond Run 3

HL-LHC

- Electronic vertex detector.
 - Si options under consideration.
- Iron-core muon spectrometer (1.75 T)
- Improved hadron calorimeter and timing detector.
- The expected statistics 3000 fb⁻¹

Conclusion

- SND@LHC measures neutrinos in the forward region of pp collisions
 - Forward charm production, lepton flavor universality, neutrino interactions, etc
- The muon flux reaching the detector was measured to validate the background model (Eur. Phys. J. C (2024) **84**: 90)
- The muon neutrino analysis was updated with an extended fiducial volume and 2023 data
 - The kinematic distributions of the 32 observed events are in agreement with the predictions
- Shower-like neutrino events were observed with a significance of 5.8 σ . (Preliminary)
- The detector performance is improved in 2024 thanks to HW and analysis upgrades
- A search for electron neutrino interactions in the emulsion data is in progress
- Letter of Intent was submitted to the LHCC (CERN-LHCC-2024-007) for AdvSND in run4

Muon flux measurement

Eur. Phys. J. C (2024) 84: 90

- Backgrounds to neutrino signals in SND@LHC are mainly due to muon interactions in the tunnel walls.
- Precise measurements of the muon flux allow for validating and constraining our background model.

• Measurements with the SciFi tracker, downstream muon system and emulsion detectors give consistent results.

Detector upgrades in 2024

Veto detector upgrade

- Installed a 3rd plane veto plane in the detector.
 - Additional redundancy to mitigate the impact of detector inefficiency.
- Floor was excavated so that veto system could be lowered.
 - Better coverage of the target.
- This upgrade will allow for a significant increase of the fiducial volume used in neutrino data analyses.

New muon telescope

- Technology demonstrator: sealed resistive-plate chambers.
- Will allow for measuring the muon flux outside of the SND@LHC acceptance.
 - Further validation of the background model.

SND@LHC detector location

Strategy:

IP₂

(ALICE)

- Existing site (avoided major civil engineering).
- Enough material to shield against collision debris.
- Use LHC magnets to deflect charged particles.

11-18

Off-axis position:

Arc 👞

• Rapidity range: $7.2 < \eta < 8.4$

LHC

- Enhances ν flux from **charm** parents.
- Complementarity with FASERv, located onaxis in symmetric tunnel (TI-12).

→ Long straight section

TI-18 location:

- Old LEP positron transfer line tunnel.
- 480 m away from IP1.
- 100 m of rock between detector and IP1.
- Downstream of dipole magnets.

Neutrinos from charm production

- Expect 90% of $v_e + \overline{v}_e$ to originate from charm decays.
 - SND@LHC $v_e + \overline{v}_e$ are a probe of forward charm production.
 - \circ Forward charm production measurement constrains gluon PDFs at very low x (10⁻⁶).
- Impact on future higher energy hadron colliders and neutrino astrophysics.

Neutrinos from charm production

- Expect 90% of $v_e + \overline{v}_e$ to originate from charm decays.
 - SND@LHC $v_e + \overline{v}_e$ are a probe of forward charm production.
 - \circ Forward charm production measurement constrains gluon PDFs at very low x (10⁻⁶).
- Impact on future higher energy hadron colliders and neutrino astrophysics.

Lepton Flavour Universality tests

- Charm hadron decays contribute to the flux of all three types of neutrinos at SND@LHC.
- The detector has excellent flavour identification capabilities.
- Unique opportunity to test lepton flavour universality with neutrinos.
 - Take ratios of event rates: $v_{\rm e}/v_{\tau}$ and $v_{\rm e}/v_{\mu}$.

Lepton Flavour Universality tests

- Charm hadron decays contribute to the flux of all three types of neutrinos at SND@LHC.
- The detector has excellent flavour identification capabilities.
- Unique opportunity to test lepton flavour universality with neutrinos.
 - Take ratios of event rates: $v_{\rm e}/v_{\tau}$ and $v_{\rm e}/v_{\mu}$.

Feebly interacting particles

• SND@LHC is sensitive to new dark sector particles.

- Scattering in the detector.
 - E.g., scalars interacting with nucleons via a leptophobic portal.

- **Decaying** in the detector.
 - Dark scalars, heavy neutral leptons or dark photons decaying into a pair of charged tracks.

Feebly interacting particles

Experiment timeline

Emulsion target

- Full target system equipped with 5 Tungsten/emulsion walls
- Total mass: 830 kg
- Number of emulsion films: 1200
- Limit to the integrated track density: 4x10⁵ tracks corresponding to 20 (10) fb⁻¹ in 2022-2023 (2024)
- Emulsion development in the CERN emulsion facility
- Emulsion scanning with automated optical microscopes in three scanning stations (CERN, Bologna, Napoli)

Hadron calorimeter test beam

- Very successful test beam data taking campaign in August 2023.
- Exact replica of the hadron calorimeter.
- Downsized mockup of the target.
 - Narrow beam spot.
- Calibrated calorimeter response.
 - Confirmed expected performance.

33

Two complementary LHC v experiments

	SND@LHC	FASER
Location	Off-axis : 7.2 < η < 8.4 Enhances charm parentage	On-axis : η > 9.2 Enhances statistics
Target	800 kg of tungsten	1100 kg of tungsten
Detector technology	Emulsion vertex detector , electromagnetic and hadronic calorimeters	Emulsion vertex detector and spectrometer

