The Pierre Auger Observatory as a Test Environment

XIII International Conference on New Frontiers in Physics

> Tuesday, September 3rd 2024 Sonja Mayotte for the Pierre Auger Collaboration smayotte@mines.edu

- Cosmic ray observatory near Malargüe in the Mendoza province of Argentina
- The location was chosen for:
 - Clear weather and dark nights
 - A flat open Pampa able to accommodate the Observatory's targeted aperture size
- The Observatory itself is 3000 km² and has accumulated roughly 100,000 km² sr yr of exposure
- The (upgraded) Observatory consists of:
 - The SD: 1600 water Cherenkov detectors (WCDs) + surface scintillator detectors (SSDs)
 - The FD: 27 fluorescence telescopes
 - The RD: 1600 radio antennas
 - The UMD: 30 m² of underground muon detectors (buried scintillator)

- Cosmic ray observatory near Malargüe in the Mendoza province of Argentina
- The location was chosen for:
 - Clear weather and dark nights
 - A flat open Pampa able to accommodate the Observatory's targeted aperture size
- The Observatory itself is 3000 km² and has accumulated roughly 100,000 km² sr yr of exposure
- The (upgraded) Observatory consists of:
 - The SD: 1600 water Cherenkov detectors (WCDs) + surface scintillator detectors (SSDs)
 - The FD: 27 fluorescence telescopes
 - The RD: 1600 radio antennas
 - The UMD: 30 m² of underground muon detectors (buried scintillator)

- Cosmic ray observatory near Malargüe in the Mendoza province of Argentina
- The location was chosen for:
 - Clear weather and dark nights
 - A flat open Pampa able to accommodate the Observatory's targeted aperture size
- The Observatory itself is 3000 km² and has accumulated roughly 100,000 km² sr yr of exposure
- The (upgraded) Observatory consists of:
 - The SD: 1600 water Cherenkov detectors (WCDs) + surface scintillator detectors (SSDs)
 - The FD: 27 fluorescence telescopes
 - The RD: 1600 radio antennas
 - The UMD: 30 m² of underground muon detectors (buried scintillator)

- Cosmic ray observatory near Malargüe in the Mendoza province of Argentina
- The location was chosen for:
 - Clear weather and dark nights
 - A flat open Pampa able to accommodate the Observatory's targeted aperture size
- The Observatory itself is 3000 km² and has accumulated roughly 100,000 km² sr yr of exposure
- The (upgraded) Observatory consists of:
 - The SD: 1600 water Cherenkov detectors (WCDs) + surface scintillator detectors (SSDs)
 - The FD: 27 fluorescence telescopes
 - The RD: 1600 radio antennas
 - The UMD: 30 m² of underground muon detectors (buried scintillator)

PEPS@Auger

Content by Ioana Maris

PEPS: Project for Extreme PeVatron Searches

Look for gamma rays in the $10^{15} - 10^{16.5}$ eV energy

- range
 - Horizon limited to few tens of kpc:
 - Surely galactic sources
 - Local diffuse flux \rightarrow Probe galactic halo
 - Could probe fundamental physics: dark matter, axions

How large would an array need to be to compare to LHAASO?

- Standard surface detector assumptions: better than 1° angular resolution
- Extrapolate the fluxes from LHAASO sources in ideal case without any flux suppression
 - $\rightarrow 6 \text{ km}^2$
 - → 10 years of operation: possibility to measure/constrain tail of gamma sources above 3 PeV, diffuse flux at almost same order of magnitude

7

PEPS: Proton/photon separation?

- Good proton/photon separation is needed
- Use segmented water Cherenkov Detector→Modify liner to have separate top and bottom "bladder"
- Top bladder still uses 3 PMTs, bottom bladder uses 1 PMT
- 5 prototypes deployed in 2014, 3 dismantled for other purposes, remaining 2 running stable for 10 years

PEPS: Future Plans

Large array with segmented WCD, spacing of 145 m, at the Pierre Auger Observatory

- Preliminary studies are encouraging, it will be hard but not impossible to see photons!
- Including the Auger underground muon detectors in the separation power might allow improvement of sensitivities at lower energies as well as more advanced techniques like DNNs
- Number of detectors: 55/km²
- Possible synergies within our collaboration: IceCube scintillators, Cherenkov telescopes
- If the proof of concept successful, expected strong synergies also with Auger, SWGO, CTAO, IceCube

FAST@Auger

Content by Toshihiro Fuji

FAST: Fluorescence detector Array of Single-pixel Telescopes

slant depth [g/cm²]

- Target: >10^{19.5} eV, ultrahigh-energy cosmic rays, neutrinos and gamma rays
- Huge target volume → Fluorescence detector array

Fine pixelated camera \rightarrow Too expensive to cover large area

azimuth [deg]

Smaller optics/fewer pixels \rightarrow Low cost \rightarrow Cover large area

azimuth [deg]

FAST: Future Plans

- A lot of analysis done on FAST@TA setup \rightarrow to be applied to FAST@Auger data
- Optimization of FAST design:
 - \circ 9 segment mirror \rightarrow 4 segment mirror,
 - 1/4 size container, modified PMT design + new electronics
- Test Array setup:

FAST@Auger w/ external trigger

Work: Jakub Kmec, Petr Hamal

- Start with ~11 km spacing (validate stereo observation with high quality events)
- Move to ~16 km to increase statistics

GRAND@Auger

Content by Charles Timmermans

GRAND: Giant Radio Array for Neutrino Detection

• 200,000 antennas total at 20 sites

GRAND Prototypes

Goal: detection of very inclined cosmic rays with autonomous trigger on radio signals

- The Horizon Antenna
 - 3 Butterfly arms at 3.5m + LNAs
 - Wifi antenna connected to bullet
 - Solar panel + Battery
 - DAQ box with electronics
 - 30-200 MHz analog filtering
- GRAND@Auger
 - One of three prototype arrays
 - 10 antennas
 - Deployed in AERA in over ~1 year (03/2023-03/2024)
 - \rightarrow Cross-calibration with AERA

GRAND Prototypes

- Triggered events with multiple stations have been measured
- \rightarrow Seem to point to known noise sources
- Next Steps
 - Main goal is to find coincidence events with Auger
 - Need to reduce the threshold!
 - Reduce noise contribution from battery charge controllers by adding filters
 - Use digital filters to reduce the noise contribution from radio and TV
 - A writeup of GRAND@Auger is in preparation

IceCube@Auger

Content by Benjamin Flaggs, Stef Verpoest

IceCube: Testing Gen2 Surface Array at Auger

IceCube: Testing Gen2 Surface Array at Auger

→Coincident event search based on IceCube radio reconstruction

IceCube: Testing Gen2 Surface Array at Auger

- For each radio event candidate
 - SD events in a window of ±0.5 s are selected
 - Rate of events in the SD dataset is only of the order 10 mHz
 - Directions reconstructed with radio signals and SD detector are then compared
 - → If the difference is smaller than 5° events are considered to be caused by same air shower
 - For validation: Use SD reconstruction (shower core, shower axis, energy) to simulate radio signal and compare
 - \rightarrow 50 coincident events detected so far
- Future Plan: Increase size of array

Auger@TA

Overview

Cross-calibration of Auger and TA with an Auger-like SD Array consisting of 8 stations:

- Deployment in south-east corner of TA array
 - 7 Auger@TA (1 PMT) stations (full hexagon)
 - 1 AugerSouth (3 PMT) station (in center)
 - → Feature: Auger@TA / Auger South / TA triplet
- Fully independent trigger and measurements
- Comms station housing all equipment to talk to outer hexagon + local CDAS computer etc.

Status overview

- Found correct procedure to bring stations online
- Can now make PMT bases from scratch
 - Bottleneck with procuring HV supplies
 - HV supplies difficult to recover from broken bases
 - \rightarrow Have now figured out a way
- Comms is working very well
- In September/October: Shake-down array and deploy remaining SSDs

Site	Station deployed	Components commissione d	Electronic s deployed	SSD deployed	Station up & running
Sam (C-A@TA)	1	1	1	1	×
Merry (C-AS)		1	1	1	1
Pippin (C-TA)	· · ·	1	×	-	×
Aragorn(1)	1	(✔)	1	×	×
Arwen (2)	1		1	×	×
Gimli (3)	1	1	1	×	1
Legolas (4)	1	×	1	×	×
Bilbo (5)	1		1	×	1
Galadriel (6)	1	1	1	×	×
Frodo (Comms)	1	1	1	-	×

Single Hexagon Projected Event Rate & Flux Measurement

- Calculate expected event rate of Single Hexagon array for each energy bin for
 - Full 5 x 5 km simulated area (with "TA" core rec.)
 - Events inside 1.125km circle (A@TA only HQ)
 - \rightarrow ~120 high quality events/yr using Auger@TA only
 - \rightarrow ~170 high quality events/yr using TA core rec
- Using $\frac{\sqrt{\sigma_{TA}^2 + \sigma_{Auger}^2 + \sigma_{SH-FA}^2}}{\sqrt{N}} + \sigma_{signal} \approx 8.11 \%$ as resolution on Auger@TA flux measurement $\rightarrow \sim 1\sigma$ -level flux comparison possible with one year

of data

Area	Events per year
5x5 km	167
R ≤ 1.125 km	117

Single Hexagon Projected Event Rate & Flux Measurement

- Calculate expected event rate of Single Hexagon array for each energy bin for
 - Full 5 x 5 km simulated area (with "TA" core rec.)
 - Events inside 1.125km circle (A@TA only HQ)
 - \rightarrow ~120 high quality events/yr using Auger@TA only
 - \rightarrow ~170 high quality events/yr using TA core rec
- Using $\frac{\sqrt{\sigma_{TA}^2 + \sigma_{Auger}^2 + \sigma_{SH-FA}^2}}{\sqrt{N}} + \sigma_{signal} \approx 8.11 \%$ as resolution on Auger@TA flux measurement
 - → ~1σ-level flux comparison possible with one year of data

Area	Events per year
5x5 km	167
R ≤ 1.125 km	117

- Pierre Auger Observatory strongly collaborating with other experiments
- More are always welcome!
- Extend all current collaborations further
- Global Comic Ray ObServatory prototyping:
 - \rightarrow 40,000km (13x the size of Auger)

Backup Slides

The Auger@TA Station

Design and implementation

- Retrofit of AugerNorth hardware with standard Auger components
 - Prototype AugerN tank shell
 - Single central WCD PMT with Auger base
 - Auger UB and TPCB
- Thanks to efforts of KIT/BUW an SSD being mounted on every station
 - SSDs assembled by KIT from spare material
 - 8 new SSD supports by KIT
 - PMTs + Bases from BUW
 - SSD to UB cables from Malargüe
- Upgraded solar power system 24V/160W/216Ah
- Internet connectivity via 4G cell network/modem
- Local comms via YAGI 2-way communication
- Independent trigger and DAQ at central station

Simulation Status & Quality Cuts

Simulation status

Auger@TA detector simulation with Offline in place

%

- Napoli/praha CORSIKA showers in range $E_{\rm MC} \in 18.0 - 19.0 \log_{10}({\rm E/eV})$
- Throw in 5 x 5 km square around central hexagon for Single Hexagon (SH) and Full Auger (FA) array
- Same random seeds/shower for each generated event for each detector configuration
- \rightarrow Allows 1:1 comparison

Using TA to regain events

- Events outside of SH under-reconstruct energy
- Events on SH border over-reconstruct energy
- Can cut on circle inside hexagon ($R \le 1.125$ km) at cost of losing a lot of events
- Using TA core rec. (here simulated by fixing core to FA reconstruction) to regain events
- \rightarrow Promising results! Keep ~86% of events with HQ rec

simulation work by Adriel Bartz Mocellin

Simulation Status & Quality Cuts

Simulation status

- Auger@TA detector simulation with Offline in place
- Napoli/praha CORSIKA showers in range $E_{\rm MC} \in 18.0 - 19.0 \log_{10}(E/eV)$
- Throw in 5 x 5 km square around central hexagon for Single Hexagon (SH) and Full Auger (FA) array
- Same random seeds/shower for each generated event for each detector configuration
- \rightarrow Allows 1:1 comparison

Using TA to regain events

- Events outside of SH under-reconstruct energy
- Events on SH border over-reconstruct energy
- → Can cut on circle inside hexagon ($R \le 1.125$ km) at cost of losing a lot of events
- Using TA core rec. (here simulated by fixing core to FA reconstruction) to regain events
- ightarrow Promising results! Keep ~86% of events with HQ rec

simulation work by Adriel Bartz Mocellin

Simulation Status & Quality Cuts

Simulation status

100

75

50

%/I 25

c, SH/Erec, FA)

Erei

-50

-75 -

-100

of Events

Number

109

18.0

18.2

184

 $E_{\rm rec, SH} / \log_{10} \left(\frac{E_{\rm rec}}{eV} \right)$

18.6

18.8

19.0

18.0

18.2

18.4

 $E_{\rm rec, SH} / \log_{10} \left(\frac{E_{\rm rec}}{e^{\rm V}} \right)$

18.6

18.8

- Auger@TA detector simulation with Offline in place
- Napoli/praha CORSIKA showers in range $E_{\rm MC} \in 18.0 - 19.0 \log_{10}(E/eV)$
- Throw in 5 x 5 km square around central hexagon for Single Hexagon (SH) and Full Auger (FA) array
- Same random seeds/shower for each generated event for each detector configuration
- \rightarrow Allows 1:1 comparison

Using TA to regain events

- Events outside of SH under-reconstruct energy
- Events on SH border over-reconstruct energy
- → Can cut on circle inside hexagon (R ≤ 1.125 km) at cost of losing a lot of events
- Using TA core rec. (here simulated by fixing core to FA reconstruction) to regain events
- \rightarrow Promising results! Keep ~86% of events with HQ rec.

12

19.0