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Abstract

Abstract

Using the loop equation, we reduce the problem of
decaying turbulence in the3 + 1 dimensional Navier-Stokes
equation to the quantum mechanics ofN Fermi particles
on a ring in one dimension, interacting with an Euler
ensemble of random fractionspq with denominatorq < N .
We �nd the solution of this system in the statistical limit
N ! 1 and compute the energy spectrum, dissipation
rate, and velocity correlation function in decaying
turbulence without approximations and �tted parameters.
We �nd the whole spectrum of critical indexes, some of
which are real, but others are complex numbers related to
zeros of the Riemann� function. Grid turbulence
experimental data and the recent large-scale DNS verify
our predictions for the energy decay curve and the energy
spectrum.All scaling laws -K41, multifractal and
Heisenberg { are ruled out.
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Theories and models

Our generation of theoretical physicists is accustomed tobuild-
ing and solving models based onexisting theories.

These basic theories {Classical Mechanics, Statistical Physics,
Relativity, Quantum Mechanics, Quantum Field Theory {
were all built for us in previous centuries.

Statistical Theory of Turbulence? Still missing.

The phenomenological models like K41 of multifractal scaling
laws all fall short of the microscopic theory we seek.

This theory must be built from the Navier-Stokes equations, like
Gibbs Statistics was built from Newton's mechanics or the �eld
theory was quantized by Dirac-Feynman sum over histories of
classical �eld.

Turbulent statistics must emerge spontaneously from the (un-
known) NS internal symmetry without ad hoc stochastic forces.
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Introduction

This talk presents a new perspective on uid mechanics, leading
to such a statistical theory of turbulence.

By employing the loop equation, we reformulate uid mechan-
ics in arbitrary spatial dimensions as a singular one-dimensional
problem.

This transformation is based on the concept of rough initial con-
ditions in the Cauchy problem for the Navier-Stokes equation.

These rough initial conditions arise from thermal uctuations
and are inherent in any physical uid. Consequently, physical
uid dynamics can be viewed as the evolution of a statistical
distribution.
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Loop Average and dimension reduction

The loop average is de�ned as the Fourier transform of the PDF
for velocity circulation

	[ ; C ] =
D

exp
� {

�
� C

�E
; (1)

� C =
I

d~C(� ) � ~v( ~C(� )); (2)

This is a particular case of the Hopf functional

	[ ; C ] =
�

exp
� Z

~r2 Rd

~JC (~r) � ~v(~r)
��

(3)

with an imaginary source~J (~r) concentrated on a �xed loop in
space

~JC (~r) =
{
�

I
d~C(� )�

�
~r � ~C(� )

�
(4)
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Loop equation as QM in Loop space

We derived a closed functional equation for the loop average in
incompressible Navier-Stokes equationM93, M23PR

{�@t 	[ ; C ] =
�


I

d~C(� ) �
�

� � ~r � ~! + ~v � ~!
�

exp
� {

�
� C

� �
=

I
d~C(� ) � ~L

"
�

� ~C(:)

#

	[ ; C ] (5)

The operator~L
h

�
� ~C(:)

i
only depends on the functional derivative,

but does not depend on the coordinate~C(:) in loop space.

This independence (translation invariance) is the key to the so-
lution. External forces would break it.
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Loop equation as QM in Loop space

This equation is equivalent to the Schr•odinger equation in loop
space with HamiltonianĤC =

H
d~C(� ) � ~L

h
�

� ~C(:)

i
.

A plane wave in loop space solves this Schr•odinger equation

	[ ; C ] =
�

exp
�

{
�

I
d~C(� ) � ~P(t; � )

��
; (6)

{@t ~P = ~L
h
� {


�

@� ~P(t; � )
i

; (7)

�@t ~P = �  2(� ~P)2 ~P+

� ~P

 

 2 ~P � � ~P + {

 
( ~P � � ~P)2

� ~P2
� ~P2

!!

; (8)

with � ~P = ~P(� + 0) � ~P(� � 0); ~P =
~P (� +0)+ ~P (� � 0)

2 .
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Loop equation as QM in Loop space

This formula for	[ ; C ] represents the Dirac-Feynman sum over
alternative historiesP(t; � ) with the classical Action

H
d~C(� ) �

~P(t; � ) and viscosity� as Planck's constant~.

The sum goes over the initial data distribution for~P(0; � ) (which
is induced by thermal uctuations of initial velocity).

In Newton's mechanics, the trajectory eventually covers the en-
ergy surface (ergodicity). We expect the loop momentum tra-
jectory ~P(t; � ) to cover some universal manifold (decaying tur-
bulence trajectory).

This analogy with QM is not a computational trick nor a poetic
metaphor: this is an exact mathematical equivalence leading
to observable quantum oscillations in the decaying energy spec-
trum.
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Asymptotic regimes of the loop equation
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Part II

Decaying turbulence solution
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Exact solution for decaying turbulence

Surprisingly, an in�nite family of analytic solutions of this singu-
lar nonlinear equation was found.

 ~P(t; � )
�

=
1

p
2� (t + t0)


̂ � ~F (� ); 
̂ 2 O(3); (9)

~Fk =

n
cos(� k ); sin(� k ); i cos

�
�
2

�o

2 sin
�

�
2

� ; (10)

� k =
2�k
N

; � =
2�p

q
; N ! 1 ; (11)

� k+1 = � k + � k � ; � k = � 1; �
X

� k = 2 �pr ; (12)

The parameterŝ
 ; N; q; r; � 0 : : : � N � 1 are arbitrary, making this
solution for ~F (� ) a universal ensemble of integer numbers (Euler
ensemble).
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Our solution

The statistical limit of the Euler ensembleN ! 1 ; � ! 0; ~� =
�N 2 = const can be computed in quadrature.
The solution is based on the transformation of this ensemble to
the quantum trace ofN fermions on a ring coupled with random
Euler fractionsp

q .
Here is the resulting formula for the second moment of velocity
di�erence in decaying turbulence:



� ~v2�

(r ) =
~� 2

�t

Z � + {1

� � {1

dp
2�{

V (p)
�

j~rj
p

~�t

� p

; (13)

V (p) = �
f (� 1 � p)�

� 13
2 � p

�
csc

� �p
2

�

16� 2(p + 1)(2 p � 15)(2p � 5)�
� 15

2 � p
� (14)

Heref (z) is an entire function computed using Mellin integrals
of elementary functions. V (p) is meromorphic. � is physical
viscosity and turbulent viscosity~� is a free parameter of our
solution.
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Spectrum of Poles and Scaling Dimensions

The spectrumpn of polesV (p) determines the scaling dimen-

sions in the correlation function's expansion in
�

j~rj=
p

~�t
� pn

.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

indexes of velocity correlation
� 1
0

2n if n 2 Z ^ n � 1
5=2
11=2

7 � {tn if n 2 Z ^ n > 0
1=2(15 + 4n) if n 2 Z ^ n � 0

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Here� tn are Riemann zeros of� (1=2 + {t).

Imaginary parts of dimensions lead to quantum oscillations.
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Energy Spectrum and its Singularities

The singularities of the Mellin transformh(p) for the energy
spectrum are de�ned as follows:

E(k; t ) =
~� 5=2

�
p

t

Z � � + {1

� � � {1

dp
2�{

h(p)
�

k
p

~�t
� p

;

These singularities are given by the following table of simple
poles:
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indexes of energy spectrum
n if n 2 Z ^ n � 0

� 7=2

� 13=2

� 8 � {tn if n 2 Z ^ n > 0

� 17=2 � 2n if n 2 Z ^ n � 0
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Mellin Transform for Energy

The Mellin transform for the energy is related to the same func-
tion h(z) as in the energy spectrum:

E(t) =
Z � 1� � + {1

� 1� � � {1

dq
2�{

e(q)
�
k2

0~�t
� q

;

e(q) = 2 �k 2
0~� 2 h(2q � 1)

q(q + 1)

The table of complex poles of this function is:
�
�
�
�
�
�
�
�
�
�
�
�
�
�

indexes of energy decay
� 5=4

� 11=4

� 7=2 � {t n =2 if n 2 Z ^ n > 0

� 15=4 � n if n 2 Z ^ n � 0

n=2 if n 2 Z ^ n � 0
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Energy decay in grid turbulence experiments
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Reynolds number decay in DNS

The time decay of Reynolds numbers for each of the four samples
from SreeniDecaying, GDSM24
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Verifying e�ective length and energy decay

The next test is the e�ective length scale, which we de�ne as

L(t) =

R
E(k; t )kdk

R
E(k; t )k2dk

; (15)

The log-log plot of L (t) is shown in Fig.21. In the turbulent
region, it perfectly matches our theoryL(t) /

p
t.

We plot E (t) as a function ofL (t)

E (t) =
Z

E(k; t )dk; (16)

logE(t) � a + f (b+ log L(t)) (17)

The parametersa; b were �tted by nonlinear regression using
"NonlinearModelFit" in Mathematica® . The resulting log-log
plot is shown in(Fig. 22).
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Verifying e�ective length and energy decay

The next test is the e�ective length scale, which we de�ne as

L(t) =

R
E(k; t )kdk

R
E(k; t )k2dk

; (15)

The log-log plot of L (t) is shown in Fig.21. In the turbulent
region, it perfectly matches our theoryL(t) /

p
t.

We plot E (t) as a function ofL (t)

E (t) =
Z

E(k; t )dk; (16)

logE(t) � a + f (b+ log L(t)) (17)

The parametersa; b were �tted by nonlinear regression using
"NonlinearModelFit" in Mathematica® . The resulting log-log
plot is shown in(Fig. 22).
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