XIII International Conference on New Frontiers in Physics | Kolymbari, Crete | August-September 2024

## AugerPrime: Expectations and first results



David Schmidt ( IT) on behalf of the Pierre Auger Collaboration

IERRE **OBSERVATORY** 

### The Pierre Auger Observatory | Ultra-high-energy cosmic rays Physics data taking since 2004

[km



Location: Height: Atm. Depth: Energy Threshold: Malargüe, Mendoza, Argentina 1450 meters 860 g/cm<sup>2</sup> 10<sup>16.7</sup> eV



#### 27 telescopes distributed between 4 locations



1660 water-Cherenkov detectors 1500 m, 750 m, and 433 m grids





# Combined spectrum



## **Unveiled complexity**

#### **Composition getting heavier with energy**



- Rigidity factors into large, medium, and point source anisotropy studies
- Source of flux suppression at highest energies still unclear



#### Inadequacies in hadronic interactions models

Complicates composition measurements

For more: contribution by Tobias Schulz from Aug. 29







### AugerPrime Introduction

Need access to primary mass on event-by-event basis with large exposure



### Goals:

- Understand nature and origin of UHECR
- Unravel origin of flux suppression
- Search for UHE photons and neutrinos
- Constrain/understand hadronic interactions at UHE
- Look for indications of BSM physics





### AugerPrime | Introduction

Need access to primary mass on event-by-event basis with large exposure



Provides composition sensitivity for near full sky with 100% duty cycle

### Goals:

- Understand nature and origin of UHECR
- Unravel origin of flux suppression
- Search for UHE photons and neutrinos
- Constrain/understand hadronic interactions at UHE
- Look for indications of BSM physics



















timeline of commissioning up to 2024-03-16 17:20:11 (UTC)





Н

2022

က

moth

this

 $\mathbf{D}$ 

 $\mathbf{O}$ 

Now







## Upgrade electronics (UUB)

- allows for measurement 200 m at 100 EeV (previously saturated ~500 m)





## **Deployment Status**

Phase I station

Stations w/ UUB (deployment complete)

Stations w/ UUB + SSD (deployment complete)

Stations w/ UUB + RD

Stations w/ UUB + SSD + RD

UUB + SSD deployment completed in mid-2023

RD deployment to be completed on timescale of weeks



### Coming online | Sample "inclined" event



| + +   | 140 | )    | E١           | vent at 8   | 34.7     | degre                                          | ee    |
|-------|-----|------|--------------|-------------|----------|------------------------------------------------|-------|
| +     | 120 |      | 30           | 5 +- 3 Ee   | έV       |                                                |       |
| + + + | 100 | , ti | eV/m²        | -           |          | f <sub>vxB</sub> meas                          | ured  |
| +     | 80  | ne ( | 96000        |             | т.       | f <sub>yxB</sub> mode<br>f <sub>geo</sub> data | led   |
| +     | 60  | hs)  | uani<br>4000 |             |          | — f <sub>geo</sub> fit                         |       |
| •     | 40  |      | eu<br>2000 - |             |          | Į                                              |       |
|       | 20  |      |              |             |          |                                                | 1 .   |
|       | 0   |      | 0            | 1000        | 200      | 0 30                                           | 000   |
| )     | 0   |      |              | Distance to | radio sł | nower axis                                     | s / n |



## **Coming online**

## Sample "vertical" event





## **Underground Muon Detector (UMD)**











































## Summary & Outlook

- AugerPrime upgrade combines composition sensitivity with massive aperture of surface detector array
- AugerPrime will operate until at least 2035
- Auger remains largest observatory for next decade
- Deployment is reaches its conclusion

#### **Current activities**

#### Improve the sensitivity to th ng and calibration procedures

- Finalizing trigger commissioning and calibration procedures
- Finalizing data processing and reconstruction pipelines
- Working on first physics results with AugerPrime

#### Next decade:

- Reduced systematics in hadronic interaction models
- Composition sensitivity in the region of flux suppression
- Enhanced sensitivity to UHE photons and neutrinos
- Composition enhanced anisotropy studies
- Search for new phenomena in hadronic interactions
- Test bed for next generation observatories (For more: contribution by Sonja Mayotte today)









## Supplementary material





