The BDF/SHiP facility at the ECN3 high-intensity beam facility at the CERN SPS

Vasilisa Guliaeva on behalf of SHiP collaboration

XIII International Conference on NF in Physics

03/09/2024

Search for Hidden Particles (SHiP)

- ► SHiP is a recently approved intensity-frontier experiment aiming to search for hidden particles with mass up to O(10) GeV and extremely weak couplings, down to 10⁻¹⁰.
- ► FIP decay search in background-free environment and LDM scattering
- Rich program at the Scattering & Neutrino Detector (SND): search for Light Dark Matter (LDM) & neutrino interaction physics with unique access to τ neutrino
 - Original Proposal (2013): Developed for new cavern ECN4
 - Refined Proposal (2023): Adaptation to existing ECN3 facility

SHiP experimental techniques: Decay & Scattering

Sensitivity is determined by three key factors:

- Yields (protons on target)
- Acceptance (including lifetime and angular acceptance)
- Background level

An exhaustive search require "model-independent" detector configuration, which should enable:

- Comprehensive reconstruction and identification of both fully and partially reconstructible modes
- Sensitivity to partially reconstructed modes
 - Distinguish between different models.
 - Assess the compatibility of the observed signal with theoretical predictions.

Scattering off atomic electrons and nuclei

	Physics model	Final state
	SUSY neutralino	$\ell^{\pm}\pi^{\mp}, \ \ell^{\pm}K^{\mp}, \ \ell^{\pm}\rho^{\mp}, \ \ell^{+}\ell^{-}\nu$
HSDS	Dark photons	$\ell^{+}\ell^{-}, 2\pi, 3\pi, 4\pi, KK, q\bar{q}, D\bar{D}$
	Dark scalars	$\ell \ell, \pi \pi, KK, q\bar{q}, D\bar{D}, GG$
	ALP (fermion coupling)	$\ell^{+}\ell^{-}, 3\pi, \eta\pi\pi, q\bar{q}$
	ALP (gluon coupling)	$\pi \pi \gamma$, 3π , $\eta \pi \pi$, $\gamma \gamma$
	HNL	$\ell^{+}\ell^{'-}\nu, \pi l, \rho l, \pi^{0}\nu, q\bar{q}'l$
	Axino	$\ell^+\ell^-\nu$
	ALP (photon coupling)	$\gamma\gamma$
	SUSY sgoldstino	$\gamma\gamma, \ell^+\ell^-, 2\pi, 2K$
	LDM	electron, proton, hadronic shower
SND	$\nu_{\tau}, \overline{\nu}_{\tau}$ measurements	τ^{\pm}
	Neutrino-induced charm production $(\nu_e, \nu_\mu, \nu_\tau)$	$D_{a}^{\pm}, D^{\pm}, D^{0}, \overline{D^{0}}, \Lambda_{a}^{+}, \overline{\Lambda_{c}}^{-}$

Vasilisa Guliaeva on behalf of SHiP collaboration

Physics Research

Target & Hadron Stopper

- Very thick: use full beam and secondary interactions (12λ)
- High-A & Z: maximize production cross-sections (Mo/W)
- Short λ (high density): stop pions/kaons before decay
- $\blacktriangleright~4\times10^{19}$ protons on target per year currently available in the SPS
 - \blacktriangleright ~ 2 × 10¹⁷ charmed hadrons (> 10 times the yield at HL-LHC)
 - $\sim 2 \times 10^{12}$ beauty hadrons
 - $\sim 2 \times 10^{15}$ tau leptons
 - ▶ $\mathcal{O}(10^{20})$ photons above 100 MeV
 - ▶ $3500 \nu_{\tau} + \bar{\nu}_{\tau}$ per year, and $2 \times 10^5 \nu_e + \bar{\nu}_e / 7 \times 10^5 \nu_{\mu} + \bar{\nu}_{\mu}$ regardless of target design

BDF baseline target design

Physics Research

Magnetic Muon Shield

- The muon shield utilizes an alternate-polarity scheme to sweep out positive & negative µ to left & right of decay volume
- Active deflection of μ with E > 10GeV
- ECN3 optimisation (hybrid SC / NC): 5.1T Shortened, preserving experiment sensitivity
- ► Initial design (NC): 1.7T

Reduction of μ rate: $2\times 10^{10}\,\mu \rightarrow < 10^5\,\mu$ per spill

Scattering & Neutrino Detector (SND)

- Original design based on nuclear emulsions: DONuT / OPERA / SND@LHC
- Emulsion Cloud Chamber (ECC) bricks
- Target Tracker (TT): 18 layers of SciFi
- μ spectrometer: Drift tubes (4 stations)
 - Air core dipole magnet: 1 T
- Optimisation study in process

Hidden Sector (HS) Decay Volume

- ▶ The fiducial decay volume is a pyramidal frustum with a length of 50 meters
 - ▶ $1.0 \times 2.7 \text{ m}^2$ at the upstream end
 - $4 \times 6 \text{ m}^2$ at the downstream end
- He at atmospheric pressure
- Lightweight structure (AI / stainless steel)
- ► Support for Liquid Scintillator-Surrounding Background Tagger LS-SBT integration
 - ► Good time resolution: *O* (1 ns)
 - ▶ High efficiency: > 99.0% for m.i.p.

Hidden Sector (HS) Decay Spectrometer

- ► Large aperture: 4.0m × 6.0m
- Precise track reconstruction: $< 120 \ \mu m$
- ► High hit efficiency: > 99.0 %
- Cu/Au-coated Mylar drift tubes (NA62 design)
- ▶ 2×2 stations of 4 double layers at 10° stereo angle, 10 000 channels altogether
- ► Magnet (NC baseline): 0.65Tm / 0.15T

Hidden Sector (HS) Decay Spectrometer: Timing Detector

- ▶ High time resolution: < 100 ps
- ► EJ200 plastic scintillator bars:
 - Dimensions: 135 cm \times 6 cm \times 1 cm
- Readout at both ends by SiPM arrays
- 3 columns of 111 vertically staggered bars (5 mm overlap), 666 channels altogether
- ► ToF (Time of Flight) identification of particle decay products

Hidden Sector (HS) Decay Spectrometer: PID

Particle Identification (PID) & Calorimeter (ECal / HCal)

- Reliable pID & μ/π separation
- Electromagnetic shower reconstruction: < 5mrad for $\gamma\gamma$ final states
- Electromagnetic sampling calorimeter (ECal): 40 layers of Fe absorbers (1/20λ) & plastic scintillators
- Compact hadron sampling calorimeter (HCal): 5 layers of Fe absorbers (1 λ each) & plastic scintillators
- Total nuclear interaction length: 7 λ
 - ▶ + 1 3 MicroMeGaS high-precision layers

Detector planes without absorber layers

Vasilisa Guliaeva on behalf of SHiP collaboration

HSDS: Background evaluation for FIP decay search

- Very simple and common selection for both fully and partially reconstructed events — model independence
- Possibility to measure background with data, relaxing veto and selection cuts, muon shield, decay volume

HSDS: Heavy Neutral Leptons (HNL) production

Production processes:

D (charm) & B (beauty) mesons decays

Detection:

decays into charged leptons, hadrons

Neutrino Minimal Standard Model νMSM extension of the SM by adding a 3 right-handed (Majorana) HNL

- N_1 (~ 10 keV) Dark Matter candidate
- $N_{2,3}$ (~ GeV) origin of neutrino masses and Leptogenesis & baryon asymmetry of the Universe

production

detection

Higgs

spin 0

HSDS: Sensitivity to Heavy Neutral Leptons (HNL)

$$\begin{split} \bullet \quad & \frac{d\mathrm{Br}(H^+ \to l_{\alpha}^+ N)}{dE_N} = \tau_H \frac{G_F^2 f_H^2 M_H M_N^2}{8\pi} |V_H|^2 |U_{\alpha}|^2 \times \left(1 - \frac{M_N^2}{M_H^2} + 2\frac{M_l^2}{M_H^2} + \frac{M_l^2}{M_N^2} \left(1 - \frac{M_l^2}{M_H^2}\right)\right) \times \\ & \sqrt{\left(1 + \frac{M_N^2}{M_H^2} - \frac{M_l^2}{M_H^2}\right)^2 - 4\frac{M_N^2}{M_H^2}} \times \delta\left(E_N - \frac{M_H^2 - M_l^2 + M_N^2}{2M_H}\right) \\ \bullet \quad & \Gamma(N \to \pi^+ l_{\alpha}^-) = \frac{|U_{\alpha}|^2}{16\pi} G_F^2 |V_{ud}|^2 f_{\pi}^2 M_N^3 \left[\left(1 - \frac{M_l^2}{M_N^2}\right)^2 - \frac{M_{\pi}^2}{M_N^2} \left(1 + \frac{M_l^2}{M_N^2}\right)\right] \times \\ & \sqrt{\left(1 - \frac{(M_\pi - M_l)^2}{M_N^2}\right) \left(1 - \frac{(M_\pi + M_l)^2}{M_N^2}\right)} \end{split}$$

▶ 90% CL, assuming 6×10^{20} p.o.t. per 15 years

Vasilisa Guliaeva on behalf of SHiP collaboration

KIII International Conference on NF in Physics

HSDS: HNL & Lepton Number Violation

- Distinguish between Majorana- and Dirac-type HNL in significant fraction of parameter space
- HNL & Lepton Number Violation (LNV):

HSDS: Sensitivity to Axion-Like Particles (ALPs)

- Production processes: B meson decays, pseudoscalar mixing, Primakoff scattering
- ▶ 90% CL, assuming 6×10^{20} p.o.t. per 15 years

HSDS: Dark photons & Dark scalars

90% CL, assuming 6×10^{20} p.o.t. per 15 years

- Dark Photons:
 - Mediate interactions between the dark sector and the Standard Model (SM)
 - Production Mechanisms:
 - from neutral meson decays such as π^0 , η , and η'
 - via bremsstrahlung from high-energy protons
 - through quark-antiquark annihilation

Dark Scalars:

- Mix with the Higgs boson
- Production Mechanisms:
 - B Meson Decays
 - Particularly through exclusive decays involving resonances with s or d quarks.

SND: Light Dark Matter production

New gauge boson A' associated with an abelian gauge symmetry U(1)', kinematically mixed with the photon (portal):

$$\mathcal{L}_{A'} = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{m^2_{A'}}{2} A'_{\mu} A'^{\mu} - \frac{1}{2} \epsilon F'_{\mu\nu} F^{\mu\nu}$$

 A' can decay into a couple of Dark Matter particles (χ)

$$\Gamma_{A'} = \sum_l \Gamma_{A' \rightarrow l^+ l^-} + \sum_{\rm hadrons} \Gamma_{A' \rightarrow \rm hadrons} +$$

$$+\sum_{\chi}\Gamma_{A'\to\chi\bar{\chi}}$$

- \blacktriangleright The relevant parameters for the phenomenology of the DP model are $(M_{A'},\epsilon)$
- Benchmark model

$$\alpha_D = 0.1 \quad \left(\frac{M_{\chi}}{M_{A'}}\right) = \frac{1}{3}$$

Scattering channels: from left to right, elastic scattering on electrons or nucleons, quasielastic (incoherent) single pion production, and deep inelastic scattering.

SND: Sensitivity to Light Dark Matter

- 90% CL, assuming 6×10^{20} p.o.t. per 15 years
- Direct search through scattering
- A' decaying into χ̄ pairs for the benchmark point α_D = 0.1 and m_{A'} = 3m_Y

LDM scattering off atomic electrons (and nuclei):

à shower produced by the electron scattered by LDM

Background:

ν elastic & QE scattering

	ν_e	$\bar{\nu}_e$	ν_{μ}	$\bar{\nu}_{\mu}$	Total
elastic (e)	156	81	192	126	555
QE	-	27	-	-	27
RES	-	-	-	-	-
DIS	-	-	-	-	-
Total	156	108	192	126	582

SND: Neutrino interaction physics

- First direct measurement of $\bar{\nu}_{\tau}$
- ► LFU test in neutrino interaction
- ν_{τ} cross section
- ν_{τ} magnetic moment

Expected observed ν_{τ} ($\bar{\nu}_{\tau}$) signal events:

Decay channel	$ u_{ au}$	$ar{ u}_{ au}$	
$\tau \to e$	8 000		
$\tau ightarrow \mu$	4 000	3 000	
$\tau ightarrow h$	27 000		
$\tau \rightarrow 3h$	11 000		
Total	53 000		

	<e>, GeV</e>	CC DIS interaction	CC DIS charm production
$\mathrm{N}\nu_e$	63	2.8×10^6	1.7×10^5
N $ u_{\mu}$	40	$8.0 imes 10^6$	3.5×10^5
$\operatorname{N}\nu_{\tau}$	54	8.8×10^4	
N $\bar{\nu}_e$	49	5.9×10^5	0.3×10^{5}
N $\bar{\nu}_{\mu}$	33	1.8×10^{6}	0.7×10^{5}
N $\bar{\nu}_{\tau}$	74	6.1×10^4	

DIS structure functions:

Measurement of F_4 and F_5 in ν_τ/ν_τ interactions

$$\begin{split} \frac{d^2\sigma^{\nu(\overline{\nu})}}{dxdy} &= \frac{G_F^2ME_\nu}{\pi(1+Q^2/M_W^2)^2} \left((y^2x + \frac{m_\tau^2y}{2E_\nu M})F_1 + \left[(1 - \frac{m_\tau^2}{4E_\nu^2}) - (1 + \frac{Mx}{2E_\nu}) \right]F_2 \\ &\pm \left[xy(1 - \frac{y}{2}) - \frac{m_\tau^2y}{4E_\nu M} \right]F_3 + \frac{m_\tau^2(m_\tau^2 + Q^2)}{4E_\nu^2M^2x}F_4 - \frac{m_\tau^2}{E_\nu M}F_5 \end{split}$$

Physics Research

BDF/SHiP preliminary schedule

- Availability of test beams challenging
- Important to start data taking > 1 year before LS4

Accelerator schedule	2022 2023 2024 2025	2026 2027 2028 2029 2030 2031 2032	2033
LHC	Run 3	LS3 Run 4	LS4
SPS (North Area)			
BDF / SHiP	Study Besign and prototyping	Production / Construction / Installation Operation	
Milestones BDF	DR studies	PRR B	
Milestones SHiP	TDR studies	↑ WRR WB	
	î		
	Approval for TDR	Submission of TDRs Facility commissioning	

Thank you!

vasilisa.guliaeva@cern.ch