Status of the Super Tau-Charm Facility

Lailin Xu (lailinxu@ustc.edu.cn) On behalf of STCF working group University of Science and Technology of China

XIII International Conference on New Frontiers in Physics (ICNFP 2024)

26 Aug- 4 Sep 2024, Crete, Greece

Super Tau Charm Facility (STCF)

A next-generation highluminosity e^+e^- collider operating in the τ – charm energy region

- Energy range: E_{cm} = 2-7 GeV
- Peak luminosity > 0.5×10^{35} cm⁻² s⁻¹ at 4 GeV
- Potential for an upgrade to increase lumi. and realize polarized beam
 - 1 ab⁻¹ data expected per year
 - Generate an unprecedentedly large number of τ leptons, particles made of c quarks
 - Important playground for study of QCD, exotic hadrons, flavor and search for new physics

Challenges of the SM

- The SM of particle physics is a well-tested theoretical framework
- However, there is a number of unresolved in particle physics:
 - Confinement: formation of colorless bound states —— "hadrons"
 - Matter-antimatter asymmetry of the Universe, dark matter, numbers of flavors, etc.

Rich Physics in the Tau-Charm Energy Region

- The tau-charm energy region covers a unique transition region between perturbative and non-perturbative QCD, with unique and rich physics programs
 - Rich resonant structures, large production cross-sections for charmonium states
 - Pair production of hadrons and tau leptons at threshold
 - Copious production of exotic hadrons (multi-quark, gluonic and hybrid states)

5

A Super Factory of Various Particles

 Not only a *τ*-charm factory, but also a factory of XYZ exotic hadrons, hyperons and light hadrons

Lailin Xu

Physics at STCF

Precisions and Sensitivities at STCF

- STCF can improve the current precisions of many important measurements, and sensitivities of many new physics searches by 1-2 orders of magnitude
- Some have exceeded theoretical expectations → Great potential to discover new physics!

Challenges of STCF Accelerator

- Ultra-high luminosity in the tau-charm energy region, high-quality beam, stable operation
- Characterized by extremely small bunch size, high beam current, strong nonlinearity and collective effects

Lailin Xu

STCF Accelerator Pre-Conceptual Design

Injector:

- Variable energy: 1-3.5 GeV
- High beam quality (emittance, energy spread)
- Two different CR injection: off-axis and swap-out
- Damping ring or accumulator ring for positrons @1 GeV
- Total length: ~400 m (+100 m beam transp.)

Parameters	Va	lue	Unit
E-gun type	Photo	Thermal	
	/Thermal	/Thermal	
Injection e- bunch charge	1.5	8.5	nC
Injection e+ bunch charge	1.5	8.5	
Injection energy	1.0-3.5	1.0-3.5	GeV
Optimal energy	2.0	2.0	GeV
MW frequency	2998.2	2998.2	MHz
Injection emittance (Geo, rms)	≤6	≤30	nm-rad
Injection energy spread (rms)	≤0.1	≤0.3	%
Injection bunch length (rms)	<7		mm
Injection frequency e-	30	30	Hz
Injection frequency e+	30	30	Hz
e+ DR injection emittance	≤1400	-	nm-rad
e+ DR extraction emittance	≤11	-	nm-rad
e+ DR RF frequency	499.7	-	MHz
e+ DR bunch numbers	5	-	
e+AR injection charge	-	2.5	nC
e+AR injection frequency	-	120	Hz
e+AR injection emittance	-	≤1400	nm-rad
e+AR extraction emittance	-	≤30	nm-rad

STCF Accelerator Pre-Conceptual Design

Lailin Xu

Collider rings:

- Injection energy: 1-3.5 GeV
- Optimal energy: 2 GeV
- Two injection schemes: off-axis, swap-out

Parameters	Units	STCF
Optimal beam energy, E	GeV	2
Circumference, C	m	871.76
Crossing angle, 2θ	mrad	60
Revolution period, T	μs	2.908
Horizontal emittance, $\varepsilon_x/\varepsilon_y$	nm	6.857/0.034
Coupling, k		0.50%
Beta functions at IP, β_x/β_y	mm	40/0.6
Beam size at IP, σ_x/σ_y	μ m	16.56/0.143
Betatron tune, v_x / v_y		32.55/29.57
Momentum compaction factor, α_p	10⁻⁴	12.322
Energy spread, σ_e	10⁻⁴	8.986
Beam current, I	А	2
Number of bunches, n_b		726
Particles per bunch, N _b	10 ¹⁰	5.00
Single-bunch charge	nC	8.01
Energy loss per turn, U_0	keV	406.8
Damping time, $ au_x/ au_y/ au_z$	ms	28.4/28.6/14.4
RF frequency, f_{RF}	MHz	499.333
Harmonic number, h		1452
RF voltage, V_{RF}	MV	1.8
Synchrotron tune, v_z		0.0158
Bunch length, σ_z	mm	9.72
RF bucket height, δ_{RF}	%	1.47
Piwinski angle, ϕ_{pwi}	rad	17.61
Beam-beam parameter, ξ_x/ξ_y		0.0027/0.082
Hour-glass factor, F_h		0.87
Luminosity, L	cm ⁻² s ⁻¹	1.0×10^{35}

STCF Accelerator Technology R&D

Bunch-by-Bunch 3D position measurement

Spectrometer Layout and Expected Performance

Solid angle coverage: $93\%.4\pi$ (polar angle: $20^{\circ} \sim 160^{\circ}$)

Inner tracker(ITK)

- <0.3%X₀/layer
- σ_{xy}<100μm

Main drift chamber(MDC)

- σ_{xy} < 130μm
 - σ_p/p~ 0.5% @ 1GeV
 - dE/dx ~ 6%

Electromagnetic calorimeter(EMC)

- E range : 0.025~3.5 GeV
- $\sigma_E @ 1GeV$
 - Barrel 2.5%; Endcap 4.0%
- Pos. res. : 5 mm

Particle identification(PID)

 π/K (K/p) 3~4σ sepa. up to 2 GeV/c

Muon detector(MUD)

- $0.4 \sim 2.0 \text{ GeV}$
- π suppression > 30

8/30/2024

STCF Detector Conceptual Design

8/30/2024

Beam-induced Backgrounds

Simulated radiation in the inner most detector layer

~3.5 kGy/y, ~2×10¹¹ 1MeV N_{eq}/cm²/y, ~1 MHz/cm²

STCF Physics & Detector CDR

82 institutions, 453 authors arXiv:2303.15790

Front. Phys. 19(1), 14701 (2024)

FRONTIERS OF PHYSICS

REPORT Volume 19 / Issue 1 / 14701 / 2024

STCF conceptual design report (Volume 1): Physics & detector

M, Achasov³, X, C, Ai⁸², R, Aliberti³⁸, Q, An^{63,72}, X, Z, Bai^{63,72}, Y, Bai⁶², O, Bakina³⁹, A, Barnyakov^{3,50}, V. Blinov^{3,50,51}, V. Bobrovnikov^{3,51}, D. Bodrov^{23,60}, A. Bogomyagkov³, A. Bondar³, I. Boyko³⁹, Z. H. Bu⁷³, F. M. Cai²⁰, H. Cai⁷⁷, J. J. Cao²⁰, Q. H. Cao⁵⁴, X. Cao³³, Z. Cao^{63,72}, Q. Chang²⁰, K. T. Chao⁵⁴, D. Y. Chen⁶², H. Chen⁸¹, H. X. Chen⁶², J. F. Chen⁵⁸, K. Chen⁶, L. L. Chen²⁰, P. Chen⁷⁸, S. L. Chen⁶, S. M. Chen⁶⁶, S. Chen⁶⁹, S. P. Chen⁶⁹, W. Chen⁶⁴, X. Chen⁷⁴, X. F. Chen⁵⁸, X. R. Chen³³, Y. Chen³², Y. Q. Chen³⁶, H. Y. Cheng³⁴, J. Cheng⁴⁸, S. Cheng²⁸, T. G. Cheng², J. P. Dai⁸⁰, L. Y. Dai²⁸, X. C. Dai⁵⁴, D. Dedovich³⁹, A. Denig^{19,38}, I. Denisenko³⁹, J. M. Dias⁴, D. Z. Ding⁵⁸, L. Y. Dong³², W. H. Dong^{63,72}, V. Druzhinin³, D. S. Du^{63,72}, Y. J. Du⁷⁷, Z. G. Du⁴¹ L. M. Duan³³, D. Epifanov³, Y. L. Fan⁷⁷, S. S. Fang³², Z. J. Fang^{63,72}, G. Fedotovich³, C. Q. Feng^{63,72}, X. Feng⁵⁴, Y. T. Feng^{63,72}, J. L. Fu⁶⁹, J. Gao⁵⁹, P. S. Ge⁷³, C. Q. Geng¹⁵, L. S. Geng², A. Gilman⁷¹ L. Gong⁴³, T. Gong²¹, B. Gou³³, W. Gradl³⁸, J. L. Gu^{63,72}, A. Guevara⁴, L. C. Gui²⁶, A. Q. Guo³³, F. K. Guo^{4,69,2}, J. C. Guo^{63,72}, J. Guo⁵⁹, Y. P. Guo¹¹, Z. H. Guo¹⁶, A. Guskov³⁹, K. L. Han⁶⁹, L. Han^{63,72}, M. Han^{63,72}, X. Q. Hao²⁰, J. B. He⁶⁹, S. Q. He^{63,72}, X. G. He⁵⁹, Y. L. He²⁰, Z. B. He³³, Z. X. Heng²⁰, B. L. Hou^{63,72}, T. J. Hou⁷⁴, Y. R. Hou⁶⁹, C. Y. Hu⁷⁴, H. M. Hu³², K. Hu⁵⁷, R. J. Hu³³, X. H. Hu⁹, Y. C. Hu⁴⁹ J. Hua⁶¹, G. S. Huang^{63,72}, J. S. Huang⁴⁷, M. Huang⁶⁹, Q. Y. Huang⁶⁹, W. Q. Huang⁶⁹, X. T. Huang⁵⁷, X. J. Huang³³, Y. B. Huang¹⁴, Y. S. Huang⁶⁴, N. Hüsken³⁸, V. Ivanov³, Q. P. Ji²⁰, J. J. Jia⁷⁷, S. Jia⁶² Z. K. Jia^{63,72}, H. B. Jiang⁷⁷, J. Jiang⁵⁷, S. Z. Jiang¹⁴, J. B. Jiao⁵⁷, Z. Jiao²⁴, H. J. Jing⁶⁹, X. L. Kang⁸, X. S. Kang⁴³, B. C. Ke⁸², M. Kenzie⁵, A. Khoukaz⁷⁶, I. Koop^{3,50,51}, E. Kravchenko^{3,51}, A. Kuzmin³, Y. Lei⁶⁰, E. Levichev³, C. H. Li⁴², C. Li⁵⁵, D. Y. Li³³, F. Li^{63,72}, G. Li⁵⁵, G. Li¹⁵, H. B. Li^{32,69}, H. Li^{63,72}, H. N. Li⁶¹, H. J. Li²⁰, H. L. Li²⁷, J. M. Li^{63,72}, J. Li³², L. Li⁵⁶, L. Li⁵⁹, L. Y. Li^{63,72}, N. Li⁶⁴, P. R. Li⁴¹, R. H. Li³⁰, S. Li⁵⁹, T. Li⁵⁷, W. J. Li²⁰, X. Li³³, X. H. Li⁷⁴, X. Q. Li⁶, X. H. Li^{63,72}, Y. Li⁷⁹, Y. Y. Li⁷², Z. J. Li³³, H. Liang^{63,72}, J. H. Liang⁶¹, Y. T. Liang³³, G. R. Liao¹³, L. Z. Liao²⁵, Y. Liao⁶¹, C. X. Lin⁶⁹, D. X. Lin³³, X. S. Lin^{63,72}, B. J. Liu³², C. W. Liu¹⁵, D. Liu^{63,72}, F. Liu⁶, G. M. Liu⁶¹, H. B. Liu¹⁴, J. Liu⁵⁴, J. J. Liu⁷⁴, J. B. Liu^{63,72}, K. Liu⁴¹, K. Y. Liu⁴³, K. Liu⁵⁹, L. Liu^{63,72}, Q. Liu⁶⁹, S. B. Liu^{63,72}, T. Liu¹¹, X. Liu⁴¹, Y. W. Liu^{63,72}, Y. Liu⁸², Y. L. Liu^{63,72}, Z. Q. Liu⁵⁷, Z. Y. Liu⁴¹, Z. W. Liu⁴⁵, I. Logashenko³, Y. Long^{63,72}, C. G. Lu³³, J. X. Lu², N. Lu^{63,72}, Q. F. Lü²⁶, Y. Lu⁷, Y. Lu⁶⁹, Z. Lu⁶², P. Lukin³, F. J. Luo⁷⁴, T. Luo¹¹, X. F. Luo⁶, H. J. Lyu²⁴, X. R. Lyu⁶⁹, J. P. Ma³⁵, P. Ma³³, Y. Ma¹⁵, Y. M. Ma³³, F. Maas^{19,38}, S. Malde⁷¹, D. Matvienko³, Z. X. Meng⁷⁰, R. Mitchell²⁹, A. Nefediev⁴⁰, Y. Nefedov³⁹, S. L. Olsen^{22,53}, Q. Ouyang^{32,63}, P. Pakhlov²³, G. Pakhlova^{23,52}, X. Pan⁶⁰, Y. Pan⁶², E. Passemar^{29,65,67}, Y. P. Pei^{63,72}, H. P. Peng^{63,72}, L. Peng²⁷, X. Y. Peng⁸, X. J. Peng⁴¹, K. Peters¹², S. Pivovarov³, E. Pyata³, B. B. Qi^{63,72}, Y. Q. Qi^{63,72}, W. B. Qian⁶⁹ Y. Qian³³, C. F. Qiao⁶⁹, J. J. Qin⁷⁴, J. J. Qin^{63,72}, L. Q. Qin¹³, X. S. Qin⁵⁷, T. L. Qiu³³, J. Rademacker⁶⁸, C. F. Redmer³⁸, H. Y. Sang^{63,72}, M. Saur⁵⁴, W. Shan²⁶, X. Y. Shan^{63,72}, L. L. Shang²⁰, M. Shao^{63,72}, L. Shekhtman³, C. P. Shen¹¹, J. M. Shen²⁸, Z. T. Shen^{63,72}, H. C. Shi^{63,72}, X. D. Shi^{63,72}, B. Shwartz³, A. Sokolov³, J. J. Song²⁰, W. M. Song³⁶, Y. Song^{63,72}, Y. X. Song¹⁰, A. Sukharev^{3,51}, J. F. Sun²⁰, L. Sun⁷⁷, X. M. Sun⁶, Y. J. Sun^{63,72}, Z. P. Sun³³, J. Tang⁶⁴, S. S. Tang^{63,72}, Z. B. Tang^{63,72}, C. H. Tian^{63,72}, J. S. Tian⁷⁸, Y. Tian³³, Y. Tikhonov³, K. Todyshev^{3,51}, T. Uglov⁵², V. Vorobyev³, B. D. Wan¹⁵, B. L. Wang⁶⁹, B. Wang^{63,72}, D. Y. Wang⁵⁴, G. Y. Wang²¹, G. L. Wang¹⁷, H. L. Wang⁶¹, J. Wang⁴⁹, J. H. Wang^{63,72}, J. C. Wang^{63,72}, M. L. Wang³², R. Wang^{63,72}, R. Wang³³, S. B. Wang⁵⁹, W. Wang⁵⁹, W. P. Wang^{63,72}, X. C. Wang²⁰, X. D. Wang⁷⁴, X. L. Wang^{63,72}, X. L. Wang²⁰, X. P. Wang², X. F. Wang⁴¹,

3.2	Experi	mental Conditions
	3.2.1	Machine Parameters
	3.2.2	Machine Detector Interface
	3.2.3	Beam Background
	3.2.4	Conclusion
3.3	Detect	or Design Overview
	3.3.1	General Considerations
	3.3.2	Overall Detector Concept
3.4	Inner 7	Tracker (ITK)
	3.4.1	Introduction
	3.4.2	Performance Requirements and Technology Choices
	3.4.3	uRWELL-based Inner Tracker
	3.4.4	MAPS-based Inner Tracker
	3.4.5	Pileup and Radiation Effects
	3.4.6	Conclusion and Outlook
3.5	Main I	Drift Chamber (MDC)
	3.5.1	Introduction
	3.5.2	Conceptual Design of the MDC
	3.5.3	MDC Simulation and Optimization
	3.5.4	Expected Performance
	3.5.5	Pileup and Radiation Effects
	3.5.6	Readout Electronics
	3.5.7	Conclusion
3.6	Particl	e Identification in the Barrel (RICH)
	3.6.1	Introduction
	3.6.2	RICH Detector Concept
	3.6.3	RICH Detector Performance Simulation
	3.6.4	Detector Layout
	3.6.5	Readout Electronics
	3.6.6	Summary and Outlook
3.7	Particl	e Identification in the Endcap (DTOF)
	3.7.1	Introduction
	3.7.2	DTOF Conceptual Design
	3.7.3	DTOF Performance Simulation
	3.7.4	DTOF Structure Optimization
	3.7.5	Background Simulation
	3.7.6	Readout Electronics
	3.7.7	Summary and Outlook
3.8	Electro	Magnetic Calorimeter (EMC)
	3.8.1	Introduction
	3.8.2	EMC Conceptual Design
	3.8.3	Expected Performance of the EMC 138
	3.8.4	Pileup Mitigation
	3.8.5	Readout Electronics
	3.8.6	EMC R&D
	387	Summary 149

8/30/2024

Offline Software

- Offline Software System of Super Tau-Charm Facility (OSCAR)
 - External Interface + Framework + Offline
- SNiPER framework provides common functionalities for whole data processing
- Full chain including Generator, Simulation, Calibration, Reconstruction and Analysis

W.H. Huang et al 2023 JINST 18 P03004

Site Selection: Hefei

Funded R&D: 0.4 Billion CNY funded by the local government • **Super Tau-Charm Facility** (STCF) Expected construction budget: 4.5 Billion CNY ٠ Hefei Advanced Light Facility (HALF) - under construction + Hefei Xingia **Future big** USTC Campus Hefei Comprehensive National Science Center "Future Big Science City", Hefei, Anhui Province

Lailin Xu

Tentative Project Schedule

Summary

- As a key player in HEP precision frontier, STCF holds great potential for discoveries and breakthroughs in studies of QCD, CPV, and new physics search
- Intensive conceptual design studies in the past few years have resulted in Physics and Detector CDR
 - Accelerator CDR to come soon
- The STCF faces challenges in key technologies of accelerator, detector, electronics etc, the R&D project is ongoing with strong support from local governments and USTC
 - A full R&D program has been established and is going full steam ahead
- Aiming to submit a proposal to the national government for starting STCF construction in the 15th five-year plan period (2026-2030)
- It is crucial to expand international collaboration and explore synergies with other projects

FTCF2024-Guangzhou

The 6th International Workshop on Future Tau-Charm Facilities (**FTCF2024-Guangzhou**) will be hosted by Sun Yat-sen University (SYSU) in Guangzhou, China, **Nov. 17-21, 2024**.

https://indico.pnp.ustc.edu.cn/event/1948/

Backup

Key Questions To The Strong Interaction

The key questions to the strong interaction

- What is the origin of observable mass (mass of hadrons)?
- How are hadrons formed, and what is the hadron structure?
- What is the essence of asymptotic freedom and color confinement?

The primary task of particle physics:develop understanding of the laws of nature at a more fundamental level.

→ Requires a coordinated multi-dimensional program: precise theoretical predictions for observation, experimental measurements with state-of-the-art sensitivities and well-controlled systematic errors.
 → STCF can play unique role to this primary task!

Spectrometer Design Requirements and Challenges

- Highly efficient and precise reconstruction of exclusive final states produced in 2-7 GeV e+e- collisions
 - Precise measurement of low-p particles (<1GeV/c) \rightarrow low mass
 - Excellent PID : π/K and μ/π separation up to 2 GeV

Process	Physics Interest	Optimized	Requirements
		Subdetector	-
$ au o K_s \pi u_{ au},$	CPV in the τ sector,		acceptance: 93% of 4π ; trk. effi.:
$J/\psi ightarrow \Lambda ar{\Lambda},$	CPV in the hyperon sector,	ITK+MDC	> 99% at p_T > 0.3 GeV/c; > 90% at p_T = 0.1 GeV/c
$D_{(s)}$ tag	Charm physics		$\sigma_p/p = 0.5\%$, $\sigma_{\gamma\phi} = 130 \mu\text{m}$ at 1 GeV/c
$e^+e^- \rightarrow KK + X,$	Fragmentation function,	DID	π/K and K/π misidentification rate < 2%
$D_{(s)}$ decays	CKM matrix, LQCD etc.	PID	PID efficiency of hadrons > 97% at $p < 2 \text{ GeV/c}$
$\tau ightarrow \mu \mu \mu, \tau ightarrow \gamma \mu,$	cLFV decay of τ ,		μ/π suppression power over 30 at $p < 2$ GeV/c,
$D_s \rightarrow \mu \nu$	CKM matrix, LQCD etc.	PID+MUD	μ efficiency over 95% at $p = 1$ GeV/c
$ au o \gamma \mu$,	cLFV decay of τ ,	EMC	$\sigma_E/E \approx 2.5\%$ at $E = 1$ GeV
$\psi(3686)\to\gamma\eta(2S)$	Charmonium transition	EMC	$\sigma_{\rm pos} \approx 5 \ {\rm mm} \ {\rm at} \ E = 1 \ {\rm GeV}$
$e^+e^- ightarrow nar{n}$,	Nucleon structure		$\sigma_{\rm m} = -\frac{300}{100}$ ps
$D_0 \rightarrow K_L \pi^+ \pi^-$	Unity of CKM triangle	EMC+MUD	$O_T = \frac{1}{\sqrt{p^3 (\text{GeV}^3)}} p^3$

Lailin Xu

Combined Tracking Performance

Ongoing layout optimization of the tracking system, particularly targeting low momentum tracking performance.

STCF Detector Conceptual Design

- Inner tracker (two options)
 - ► MPGD: cylindrical MPGD
 - Silicon: CMOS MAPS
- Central tracker
 - Drift chamber
- ✤ PID
 - Barrel: RICH with CsI-MPGD
 - ► Endcaps: DIRC-like TOF (DTOF)
- ✤ EMC
 - pure CsI + APD
- Muon detector
 - RPC + scintillator strips
- Magnet
 - Super-conducting solenoid, 1 T

Tracking System : inner tracker + main drift chamber

Particle Identification

• Barrel : A RICH detector using MPGD (THGEM with CsI + MM) for photon detection

Endcaps : A DIRC-like high-resolution TOF detector (DTOF)

 $K/\pi > 4 \sigma$ @2.0GeV

Lailin Xu

Electromagnetic Calorimeter

- A crystal calorimeter using pure CsI to tackle the high background rate (> 1 MHz/crystal)
 - crystal size: 28cm (15X₀), 5×5cm²
 - 6732 crystals in barrel, 1938 crystals in endcaps
 - defocused layout
 - 4 large area APDs (1×1cm²) to enhance light yield

8/30/2024

Muon Detector

- A hybrid design with RPC and scintillator strips for optimal overall performance
 - RPC for inner layers : not sensitive to background
 - Scintillator for outer layers: sensitive to hadrons
- Key design parameters have been optimized for muon and neutral hadron identification performance
 - Inner 3 RPC layers + outer 7 scintillator layers

Using BDT combining the muon detector and EMC

MAPS: aiming for a low-power chip design with timing capability

GSMC 130nm

8/30/2024

FCIS 90 nm

Full-sized DTOF prototype: a complete endcap sector!

安装风扇和探测器外壳

Std Dev

 γ^2 / ndf

ime for single photoel

-1.56

86.49

484.7 / 70

 5096 ± 26.2

 63.3 ± 0.3

 131.1 ± 14.8

 -12.1 ± 6.4 173.2 ± 7.0

 1.745 ± 0.281

Dtof-Spe7

single photon time

resolution~59ps

安装柔性背板

安装前端版 Dtof-meanT

RICH readout ASIC

丝型漂移阴极

气体腔室

$\sigma_{\rm t}$ <1 ns@20fC&20pF counting rate > 100 kHz

MDC Trigger algorithm and logic DAQ PXI and PCIe boards

STCF R&D Project Kick-Off and Review Meetings

Kick-off Meeting, Aug. 2023, USTC More than 30 academicians of CAS, as well as government officials of Anhui province and Hefei city, along with representatives from various domestic research institutions, totaling 170 attendees.

R&D Project Review, Dec. 2023, USTC

Organized by Development and Reform Commissions of Anhui province and Hefei city. The R&D project was approved for a budget of 364 M CNY and is jointly funded by Anhui, Hefei and

Lailin XuUSTC.

STCF Conferences and Workshops

Inte	ernati	on	al Place		Content
	2015.0)1	Hefei, China		First
2018.03 Beijir		Beijing, Chi	na	Second	
	2018.0	2018.05 Novosibirsk, F		ussia	Third
	2018.1	2	Paris, Fran	се	Fourth
	2019.0	8	Moscow, Russia		Fifth
	2020.1	1	Online, China		Sixth
	2021.1	1	Online, Russia		Seventh
	2024.0)1	Hefei, Chin	na	Eighth
Dom	nestic		Place		Content
Dom 2	1018.10	He	Place engyang (USC)		Content STCF
Dom 2 2	1018.10 2019.03	He	Place engyang (USC) seijing (UCAS)		Content STCF STCF: Physics
Dom 2 2 2	018.10 019.03 019.07	He	Place engyang (USC) seijing (UCAS) Hefei (USTC)	S [.]	Content STCF STCF: Physics TCF: Accelerator
Dom 2 2 2 2 2	2018.10 2019.03 2019.07 2019.08	He	Place engyang (USC) seijing (UCAS) Hefei (USTC) Hefei (USTC)	S ⁻ STCF	Content STCF STCF: Physics TCF: Accelerator : Phys. &simulatio
Dom 2 2 2 2 2 2 2	Nestic 2018.10 2019.03 2019.07 2019.08 2019.11	He	Place engyang (USC) eeijing (UCAS) Hefei (USTC) Hefei (USTC) eijing (UCAS)	S [.] STCF	Content STCF STCF: Physics TCF: Accelerator : Phys. &simulatio STCF: CDR
Dom 2 2 2 2 2 2 2 2 2 2 2 2	Nestic 2018.10 2019.03 2019.07 2019.08 2019.11 2020.08	He B	Place engyang (USC) eijing (UCAS) Hefei (USTC) Hefei (USTC) eijing (UCAS) Hefei (USTC)	STCF	Content STCF STCF: Physics TCF: Accelerator : Phys. &simulatio STCF: CDR F: From CDR to TD
Dom 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Nestic 2018.10 2019.03 2019.07 2019.08 2019.11 2020.08 2022.12	He B B	Place engyang (USC) eijing (UCAS) Hefei (USTC) Hefei (USTC) eijing (UCAS) Hefei (USTC) Hefei (USTC)	STCF STCF	Content STCF STCF: Physics TCF: Accelerator : Phys. &simulatio STCF: CDR F: From CDR to TD TCF: R&D kick-off

8/30/2024

2018年2-7吉电子伏高亮度正负电子对撞机国际研讨会(HIEPA2018)

2022超级陶粲装置研究进展研讨会

39