

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

1 / 18

K ロ ト K 伺 ト K ヨ ト K ヨ ト

Recent measurement of CP violation and mixing with wrong-sign and right-sign $D^0 \to K \pi$ decays XIII International Conference on New Frontiers in Physics

Mateusz Kmieć

On behalf of the LHCb collaboration

26 August, 2024

Why are we interested in charm physics?

1. Precision measurements of CPV involving up-type quarks

 \Rightarrow studies complementary to K and B.

2. In Charm:

 \Rightarrow Expect very small CP asymmetry in the SM $\sim 10^{-3}.$ Hints of NP if higher values are observed!

 \Rightarrow Mixing very slow therefore highly precise detector required.

3. Theoretical pre[d](#page-2-0)iction[s](#page-20-0) are diffi[c](#page-0-0)ult since $m_c \approx \Lambda_{QCD}$ $m_c \approx \Lambda_{QCD}$ $m_c \approx \Lambda_{QCD}$ $m_c \approx \Lambda_{QCD}$ [an](#page-1-0)d $\alpha_s(m_c)$ $\alpha_s(m_c)$ $\alpha_s(m_c)$ $\alpha_s(m_c)$ i[s l](#page-0-0)[arge](#page-20-0).

Cabibbo-Kobayashi-Maskawa (CKM) Matrix and CPV

$$
V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)
$$

- 1. Complex phase $i\eta \Rightarrow$ the only known source of CPV in the SM
- 2. Relation relevant for D^0 meson decays and mixing: $\Rightarrow V^*_{ud}V_{cd} + V^*_{us}V_{cs} + V^*_{ub}V_{cb} = 0$
- 3. Scale of CPV related to the openness of the unitary triangle D^0 : $\beta_c \approx 0.03^\circ$ B^0 : $\beta \approx 22^\circ$

$$
\frac{\beta_c}{\sqrt{\frac{V_{ud}^*V_{cd} \sim \lambda}{V_{us}^*V_{cs} \sim \lambda}} V_{ub}^*V_{cb} \sim \lambda^5}
$$

sine of Ca[bb](#page-1-0)i[bo](#page-3-0) [an](#page-2-0)[gl](#page-3-0)[e](#page-0-0) $\lambda \approx 0.2$ $\lambda \approx 0.2$ $\lambda \approx 0.2$ $\lambda \approx 0.2$ 3 / 18

All types of CPV

1. Direct (charm hadrons M):

$$
\mathrel{\circ} \mathsf{CPV} \text{ in decay } |A(M \to f)|^2 \neq |A(\overline{M} \to \overline{f})|^2
$$

2. Indirect (only for neutral mesons):

$$
\circ \text{ CPV in mixing } \Gamma(D^0 \to \overline{D^0}) \neq \Gamma(\overline{D^0} \to D^0)
$$

◦ CPV in interference between mixing and decay $\Gamma(D^0 \rightarrow \overline{D^0} \rightarrow f_\text{CP}) \neq \Gamma(\overline{D^0} \rightarrow D^0 \rightarrow f_\text{CP})$

Mixing and CPV in Charm

$$
i\frac{d}{dt}\begin{pmatrix}M^0(t)\\ \bar{M}^0(t)\end{pmatrix}=\begin{bmatrix}\begin{pmatrix}M_{11} & M_{12}\\ M_{21} & M_{22}\end{pmatrix}-\frac{i}{2}\begin{pmatrix}\Gamma_{11} & \Gamma_{12}\\ \Gamma_{21} & \Gamma_{22}\end{pmatrix}\end{bmatrix}\begin{pmatrix}M^0(t)\\ \bar{M}^0(t)\end{pmatrix}
$$

1. Oscillations governed by:

$$
\rightarrow x_{12} = \frac{2|M_{12}|}{\Gamma}, y_{12} = \frac{|\Gamma_{12}|}{\Gamma}.
$$

- 2. CPV described with dispersive and absorptive phases:
	- $\rightarrow \phi_2^{\mathcal{M}} \sim \arg(M_{12}),\ \phi_2^{\mathsf{\Gamma}} \sim \arg(\mathsf{\Gamma}_{12}).$
	- \rightarrow CPV when $\phi_2^M \phi_2^F \neq 0$
	- \rightarrow SM in charm: $\phi_2^M, \phi_2^{\Gamma} \sim O(2$ mrad) [Kagan & Silvestrini 2021 PRD 103.053008](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.053008)

K ロ メ イ 団 メ マ ヨ メ ス ヨ メ ニ ヨ

5 / 18

 QQQ

CKM Matrix and classification of decays

$$
V_{CKM} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)
$$

1. $\lambda \approx 0.2$ defined as sine of the Cabibbo angle.

2. Decay classification: λ^n in decay amplitudes:

- \circ Cabibbo favoured (CF) \rightarrow n = 0,
- \circ singly Cabibbo suppressed (SCS) \rightarrow n = 1,

 \circ doubly Cabibbo supressed (DCS) \rightarrow n = 2.

- 3. SCS decays (both tree and penguin contributions) \Rightarrow small CPV present in the SM
- 4. CF and DCS decays (only one diagram contributes) ⇒ no CPV in the SM

 4 ロ \rightarrow 4 \overline{m} \rightarrow \rightarrow Ξ \rightarrow

arXiv:2405.10709v1

LHCb Run 1 (2011-2012) and Run 2 (2015-2018)

◦ World's Largest sample of charm hadron decays:

$$
\Rightarrow \sigma(pp \to c\bar{c}X) \approx 2.4mb \otimes \sqrt{s} = 13 \text{ TeV [JHEP 05 (2017) 074]}
$$

$$
\Rightarrow \text{Run1} \to 3\text{fb}^{-1} \otimes \sqrt{s} = 7.8 \text{ TeV}; \text{ Run2} \to 6\text{fb}^{-1} \otimes \sqrt{s} = 13 \text{ TeV}
$$

- Excellent particle identification, tracking and vertexing:
	- \Rightarrow K 95% eff. for 5% $\pi \rightarrow K$ mis-ID.
	- ⇒ Momentum resolution $\Delta p/p = 0.5%$ at low momentum.
	- \Rightarrow Impact parameter resolution: $(15 + 29/p_T)\mu m$
	- ⇒ Decay time resolution: 45fs $\sim 0.1 \tau_{D^0}$.

イロト イ押 トイヨ トイヨ トー

Experimental status - CPV in the decay

◦ In 2019 LHCb reported first observation of CPV in charm.

 $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-15.4 \pm 2.9) \cdot 10^{-4}$ (5.3 σ) [\[PRL 122.211803\]](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.211803)

- \circ In 2023 evidence of CPV in $D^0 \rightarrow \pi^+ \pi^-$ decay. $a_{\pi^+\pi^-}^d = (23.2 \pm 6.1) \cdot 10^{-4}$ (3.8σ) [\[PRL 131.091802\]](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.091802)
- Interpretation within the SM still debated.

Measurement of CPV and mixing with $D^0 \to K \pi$ WS/RS [\[arXiv:2407.18001\]](https://arxiv.org/abs/2407.18001)

For small theoretical mixing parameters x_{12} , y_{12} < < 1:

$$
R_{K\pi}^{\pm}(t) \approx R_{K\pi} \left(1 \pm A_{K\pi}\right) + R_{K\pi} \left(1 \pm A_{K\pi}\right) \left(c_{K\pi} \pm \Delta c_{K\pi}\right) \left(\frac{t}{\tau_{D^0}}\right) + \left(c_{K\pi}' \pm \Delta c_{K\pi}'\right) \left(\frac{t}{\tau_{D^0}}\right)^2
$$

CPV observables: $A_{K\pi}$ (in decays), $\Delta c_{K\pi}$ (in interference), $\Delta c'_{K\pi}$ (in mixing). Mixing observables: $c_{K\pi}$, $c'_{K\pi}$ $R_{K\pi} \rightarrow$ DCS/CF ratio \sim 3.4x10⁻³

Data

Analysis overview

- Offline Selection
- Data divided 108 bins:

 \rightarrow 18 decay-time x 3 data-taking x 2 final states

- In each bin:
	- \rightarrow determine average D^0 decay-time: $\langle t \rangle, \langle t^2 \rangle$
	- \rightarrow WS/RS ratio $(R^{\pm}) \Rightarrow D^*$ mass fit
- Correct them for systematic effects:
	- \rightarrow Ratio bias
	- \rightarrow Asymmetry bias
	- $\rightarrow D^0$ decay-time bias $\delta {\cal T}$
- CPV+mixing extracted from time-dependent fit

Systematic effects

◦ Ratio bias

 \rightarrow Ghost bkg hits correctly identified in VELO but not in T-stations.
T-stations

 \rightarrow double mis-ID WS \rightsquigarrow RS: $D^0 \rightarrow K^-(\leadsto \pi^-)\pi^+(\leadsto K^+)$

◦ Instrumental asymmetry bias.

 \rightarrow Differences in rec. between WS and RS may mimic CPV.

 \circ D^0 decay-time bias.

 \rightarrow Contamination with secondary decays.

WS/RS ratio determination

[arXiv:2407.18001](https://arxiv.org/abs/2407.18001)

Mixing+CPV fit Model

$$
R_{ty}^{\pm} \equiv \left[R_{K\pi} \left(1 \pm A_{K\pi}\right) + \sqrt{R_{K\pi} \left(1 \pm A_{K\pi}\right)} \left(c_{K\pi} \pm \Delta c_{K\pi}\right) \left\langle T\right\rangle^{\pm}_{ty} + \left(c'_{K\pi} \pm \Delta c'_{K\pi}\right) \left\langle T^2\right\rangle^{\pm}_{ty}\right] \times \left(1 \pm 2A_{ty} - C\right) + D
$$

- C bias due to WS signal candidates discarded with cut on ghosts
- A_{t} -instrumental asymmetry bias
- D bias due to cut on double mis-ID
- $\langle T^2 \rangle$ and $\langle T \rangle$ corrected for D^0 decay-time bias from secondary decays

Mixing+CPV fit - Results

イロト イ押 トイヨ トイヨ トー QQ 15 / 18

Impact on the World Average

1. $\Delta c_{K\pi}$ mostly dependent on $x_{12}\cdot\phi_2^M$ \rightarrow 16% improvement on $\phi_2^{\cal M}$

2. $c_{K\pi} \approx y_{12} \cos \Delta_{K\pi} + x_{12} \sin \Delta_{K\pi}$

 \rightarrow y_{12} precisely measured PRD 105.092013

 \rightarrow precise determination of $\Delta_{K\pi}$
(departure from $SU(3)_F$ at $\sim 4\sigma)$

Impact on the World Average - $a_{DCS}^d = 0$

[arXiv:2407.18001](https://arxiv.org/abs/2407.18001)

parametrisation from appendix B

- $1.$ $a^d_{KK} \rightarrow 10\%$ improvement wrt. [\[PRL 131.091802\]](https://arxiv.org/pdf/2209.03179)
- 2. ϕ_2^M further reduced to 13mrad
- 3. charm+beauty global fit, see [LHCb-CONF-2024-004.](https://cds.cern.ch/record/2905625/files/LHCb-CONF-2024-004.pdf)

Summary and Future Prospects

- 1. Improved ϕ_2^M uncertainty.
- 2. Significant (4 σ) departure of $\Delta_{K\pi}$ from zero expected in U-spin symmetry.
- 3. $a^d_{\mathcal{K}\mathcal{K}}\rightarrow 10\%$ improvement wrt. [PRL 131.091802].
- 3. Global fit charm+beauty in [LHCb-CONF-2024-004.](https://cds.cern.ch/record/2905625/files/LHCb-CONF-2024-004.pdf)
- 4. Uncertainties statistically dominated \rightarrow expected improvement in Run 3.

BACKUP

K ロ → K 個 → K 星 → K 星 → 三星 → の Q Q → 18 / 18

Asymmetry bias

1. Differences in rec. eff. between WS and RS may mimic CPV.

2. $D^0 \rightarrow K^+ K^-$ kinematics is equalised to $D^0 \rightarrow K^+ \pi^-$ to cancel instrumental asymmetries

3.
$$
A_D(\pi_s) + A_P(D^*) = A^{raw}(KK) - (a_{KK}^d + \Delta Y \langle t \rangle)
$$

 \rightarrow ext. input [PRL 131.091802, PRD 104.072010]

Decay-time bias

1. Poor D^* vertex resolution $(\sim 1 \text{ cm}) \Rightarrow D^*$ constrained in the PV

- 2. Contamination from secondary D^* from B decays
	- \rightarrow bias decay time towards higher values
	- \rightarrow deformed D^* mass line-shape
- 3. Apply cut $\mathit{IP}(D^0)< 60 \mu m$