LHCb Highlights

Laís Soares Lavra (University of Edinburgh) on behalf of the LHCb Collaboration

> ICNFP 2024, Kolymbari 26 August – 4 September 2024

LHCb detector in a nutshell

Forward arm spectrometer with unique coverage in pseudorapidity (2 < η < 5)

LHCb Atlas/CMS

Acceptance

LHCb Physics Program

Main focus on heavy flavour but plenty of other physics in the forward region

LHCb Physics Program

Main focus on heavy flavour but plenty of other physics in the forward region

LHCb: Past - Present - Future

Outline

1. Very Selected LHCb Highligths from Run 1 & Run 2

focus on rare b decays

2. LHCb Upgrade(s)

Upgrade I: current status

Upgrade II in few words

For more at LHCb see also :

- CP violation and mixing in charm (M. Kmiec)
- LFU tests in semileptonic decays (B. Kutsenko)
- Multi-quark states (S. Joshi)

LHCb Highlights from Run 1 & 2

(with focus on rare decays)

Rare decays as a probe of New Physics

Anomalies in $b \rightarrow sl^+l^-$ decays

Increasing theoretical uncertainty

Complementary searches:

- Explore new final states of $b \rightarrow sl^+l^-$ with electrons and taus, new radiative modes ...
- Search for decays forbidden in the SM or beyond experimental reach

Very selected results presented today

(from rare b decays)

Angular analysis	Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$ decays [LHCb-PAPER-2024-022 in preparation]				
Radiative decays	Search for the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay [JHEP 07(2024) 101]				
	Amplitude analysis of the radiative decay $B_s^0 \rightarrow K^+ K^- \gamma$ [JHEP08(2024)093]				
Very rare and forbidden decays					
	Search for $B_{(s)}^{*0} \rightarrow \mu^+\mu^-$ in $B_c^+ \rightarrow \pi^+\mu^+\mu^-$ decays [Submitted to EPJC, <u>LHCb-CONF-2024-003</u>]				
	Search for lepton-flavour-violating decay $B_s^0 \rightarrow \phi \mu^{\pm} \tau^{\mp}$ [Submitted to PRD, arXiv:2405.13103]				

Other recent results **not covered in this talk**

- Analysis of local and nonlocal amplitudes in the $B^0 \to K^{*0}\mu^+\mu^-$ [Submitted to JHEP, <u>arXiv:2405.17347</u>] - Amplitude analysis of the decay $\Lambda_b^0 \to pK^-\gamma$ [JHEP 06 (2024) 098]

Still to come:

- Observation of the $\Sigma^+ \rightarrow p\mu^+\mu^-$ rare decay at LHCb [LHCb-CONF-2024-002, paper in preparation]

- Analysis of $\Lambda_b^0 \to p K^- \mu^- \mu^+$ [Submitted to JHEP, paper in preparation]

ICNFP 2024, Lais Lavra

Angular Analysis of $B^0 \rightarrow K^{*0}e^+ e^-$ decays

- First angular analysis at LHCb: central q^2 region [1.1,6.0] GeV²/c⁴
- Dataset: 9 fb^{-1} from LHCb (Run1 + Run2)
- Decay rate fully described by $\vec{\Omega} = (\theta_l, \theta_K, \phi), q^2 = m^2(ee)$

$$\frac{d^{4}\Gamma[B^{0} \rightarrow K^{*0}e^{+}e^{-}]}{dq^{2}d\vec{\Omega}} = \frac{9}{32\pi}\sum_{i}I_{i}(q^{2})f_{i}(\vec{\Omega}) \text{ angular functions}$$

angular coefficients

[LHCb-PAPER-2024-022 in preparation]

 $I_i(q^2)$:combination of different K^{*0} amplitudes (sensitive to WC $C_{9,10}^{(\prime)}$ and form factors)

Angular Analysis of $B^0 \rightarrow K^{*0}e^+ e^-$ decays

[LHCb-PAPER-2024-022 in preparation]

Observables extracted from 4D unbinned weighted fit to the mass and angular distributions

Angular observables measured in the q^2 region [1.1,6.0] GeV²/c⁴

Overall good agreement with SM predictions

 $q^2 = m^2(ee)$

Angular Analysis of $B^0 \rightarrow K^{*0}e^+ e^-$ decays

[LHCb-PAPER-2024-022 in preparation]

This measurement paves the way for high-precision LFU/angular analyses at LHCb for Run 3 and beyond

ICNFP 2024, Lais Lavra

Search for the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay

JHEP 07(2024) 101

$$B_s^0 \rightarrow \mu^+ \mu^- \gamma$$
 vs $B_s^0 \rightarrow \mu^+ \mu^-$

- $B_{S}^{\circ} \rightarrow \mu \ \mu \ \gamma \rightarrow \cdots \rightarrow s$ Sensitive to a larger set of WCs $(C_{7,9,10}^{(\prime)})$ than $B_{S}^{0} \rightarrow \mu^{+}\mu^{-} (C_{10}^{(\prime)})$ $(\gamma_{10}^{\circ})^{20}$ $B(B_{S}^{0} \rightarrow \mu^{+}\mu^{-}\gamma) \sim B(B_{S}^{0} \rightarrow \mu^{+}\mu^{-})$ Large theoretical uncertainties
 Worse mass resolution due to the photon reconstruction

Theory Prediction [JHEP 11 (2017) 184]

 $\mathcal{B}(\bar{B}^0_s \to \mu^+ \mu^- \gamma)_{\log q^2} = (8.4 \pm 1.3) \times 10^{-9},$ $\mathcal{B}(\bar{B}^0_s \to \mu^+ \mu^- \gamma)_{\text{high } q^2} = (8.90 \pm 0.98) \times 10^{-10},$

 $low-q^2 \rightarrow q^2 < 8.64 \text{ GeV}^2/c^4$ high- $q^2 \rightarrow q^2 > 15.84 \text{ GeV}^2/c^4$ $q^2 = m^2(\mu\mu)$

Search for the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay

LHCb

5.4 fb⁻¹ m(μ⁺μ⁻)

35 E

30 E

25

Candidates / (80 MeV/c²)

JHEP 07(2024) 101

- Dataset: 5.4 fb⁻¹ from Run2 (2016-2018)
- Direct search in three q^2 regions

Bin I → low- q^2 (+ with ϕ -vetoed) Bin II → middle- q^2 Bin III → high- q^2

More fit of $P^0 \rightarrow u^+ u^- v$ in all $a^2 regions$

Search for the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay

JHEP 07(2024) 101

Upper limits on the branching fraction

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm I} < 3.6 \, (4.2) \times 10^{-8}, \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm II} < 6.5 \, (7.7) \times 10^{-8}, \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm III} < 3.4 \, (4.2) \times 10^{-8}, \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm I, \ with \ \phi \ veto} < 2.9 \, (3.4) \times 10^{-8}, \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm comb.} < 2.5 \, (2.8) \times 10^{-8}, \\ \mathrm{at \ 90\% \ (95\%) \ CL} \end{split}$$

- First direct search for $B_s^0 \to \mu^+ \mu^- \gamma$ at low q^2
- No significant excess is observed in all q^2 region

Differential branching fraction $B_s^0 \rightarrow \mu^+ \mu^- \gamma$

Run 3 data is expected to improve the sensitivity on the search

Amplitude Analysis of the $B_s^0 \rightarrow K^+ K^- \gamma$ decay

[JHEP08(2024)09]

- $B_s^0 \to \phi(\to K^+K^-)\gamma$ giving access to photon polarization
- Both tagged and untagged analyses perfomed by LHCb [PRL 123 (2019) 8, 081802]
- $B_s^0 \to \phi \gamma$: only radiative transition observed in the B_s^0 sector³

Other contributions to $B_s^0 \rightarrow K^+ K^- \gamma$?

Exploring with an amplitude analysis

- Full LHCb Run1 + Run2 (2011-2018) dataset
- Performed in the m(KK) range: $[2m_K, 2400 MeV]_{Run2}, [2m_K, 1950 MeV]_{Run1}$
- Isobar model in folded helicity plane $(m_{KK}, |\cos\theta_{KK}|)$

Background subtracted projection of $B_s^0 \rightarrow K^+ K^- \gamma$

Amplitude Analysis of the $B_s^0 \rightarrow K^+ K^- \gamma$ decay

[JHEP08(2024)09]

Best fit projection

 $N(B_s^0) = (44.4 \pm 0.5) \times 10^3$, about 2% have $m_{KK} > 1.8 \text{ GeV}$

• Overall tensor states (f_2) fit-fraction is

 $\mathcal{F}_{\{f_2\}} = 16.8 \pm 0.5 \,(\mathrm{stat}) \pm 0.7 \,(\mathrm{syst})\%,$

• The decay $B_s^0 \to f_2'(1525)\gamma$ is observed for the first time

 $\frac{\mathcal{B}(B_s^0 \to f_2'(1525)\gamma)}{\mathcal{B}(B_s^0 \to \phi(1020)\gamma)} = 0.194^{+0.009}_{-0.008} \text{ (stat.)}^{+0.014}_{-0.005} \text{ (syst.)} \pm 0.005 \text{ (}\mathcal{B}\text{)}$

• Mass and width for the $f_2'(1525)$ are in good agreement with the current world average and LHCb measurements

Search for $B_{(s)}^{*0} \rightarrow \mu^+ \mu^-$ in $B_c^+ \rightarrow \pi^+ \mu^+ \mu^-$ decays

- $B_{(s)}^{*0} \rightarrow \mu^+ \mu^-$ can provide constraints on WCs complementary to $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ decays
- SM prediction $\mathcal{B}(B_s^{*0} \to \mu^+ \mu^-) \sim 10^{-11} \text{ [PRL 116 (2016) 141801]}$

First search for $B^{*0} o \mu^+ \mu^-$ and $B^{*0}_s o \mu^+ \mu^-$ decays

- 9 fb⁻¹ from Run1 + Run2 dataset (2011-2018)
- Search within $B_c^+ \to B_{(s)}^{*0}\pi^+ \to \mu^+\mu^-\pi^+$ decay chain
- Exploit displaced B_c^+ vertex to suppress background Similar approach as $D^{*0} \rightarrow \mu^+ \mu^-$ search [EPJ C83 (2023) 666]

No signal observed for both decay modes $\mathcal{R}_{B^{*0}(\mu^+\mu^-)\pi^+/J/\psi\pi^+} < 3.8 (5.2) \times 10^{-5} \text{ at } 90 (95)\% \text{ CL},$ $\mathcal{R}_{B_s^{*0}(\mu^+\mu^-)\pi^+/J/\psi\pi^+} < 5.0 (6.3) \times 10^{-5} \text{ at } 90 (95)\% \text{ CL}.$

$$\mathcal{R}_{B_{(s)}^{*0}(\mu^+\mu^-)\pi^+/J/\psi\pi^+} \equiv rac{\mathcal{B}(B_c^+ o B_{(s)}^{*0}(\mu^+\mu^-)\pi^+)}{\mathcal{B}(B_c^+ o J/\psi\pi^+)}$$
 ICNFP 2024, Lais Lavra

Submitted to Eur. Phys. J. C. LHCb-CONF-2024-003

Search for cLFV decay $B_s^0 \rightarrow \phi(\rightarrow K^+K^-)\mu^{\pm}\tau^{\mp}$

- Possible in SM with neutrino oscillation $(\mathcal{B} < 10^{-50})$, NP scenarios $\mathcal{B} < 10^{-11}$
- NP models predict deviations especially involving the 3rd family

First search for the $B_s^0 o \phi \mu^\pm \tau^\mp$ decay

- Data from full Run1 + Run2 (9 fb^{-1})
- Signal reconstruction with $\phi \to K^+K^-$ and $\tau \to 3\pi$ (including $\tau \to 3\pi\pi^0$)
- Neutrino missing : reconstruct B_s^0 mass using vertex and kinematic constraints

Submitted to Phys. Rev. D, arXiv:2405.13103

Mass fit: 4 different background shapes considered

Search for cLFV decay $B_s^0 \rightarrow \phi(\rightarrow K^+K^-)\mu^{\pm}\tau^{\mp}$

Submitted to Phys. Rev. D, arXiv:2405.13103

- No excess observed over background-only hypothesis
- First upper limit on this decay mode \rightarrow comparable sensitivity with other $b \rightarrow s\tau\mu$ searches [JHEP 06 (2020) 129, JHEP 06 (2023) 143]

 $\mathcal{B}(B_s^0 \to \phi \mu^+ \tau^-) < 1.0 \times 10^{-5} \text{ at } 95\% \text{ CL},$ $\mathcal{B}(B_s^0 \to \phi \mu^+ \tau^-) < 1.1 \times 10^{-5} \text{ at } 95\% \text{ CL}.$

LHCb Upgrade(s)

LHCb Upgrade I (2022+)

LHCb in Run 3 (& Run4): a new detector!

- 5x higher instantaneous luminosity
- Expected to collect $\sim 23 \text{ fb}^{-1}$ end of Run 3, and 50 fb⁻¹ end of Run 4
- Software only trigger: full detector readout at 30 MHz

 $\mathcal{L} = 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ $\mathcal{L}_{int} = 50 \text{ fb}^{-1}$ $\mu \approx 5$

LHCb Run 3 performance

Current status: detectors stably operating and collecting *pp* data!

Hit Efficiency approaching design specification (better than 99%)

LHCb Run 3 performance

Current status: detectors stably operating and collecting *pp* data!

5x instantaneous luminosity

Significant trigger improvement in selecting hadronic B decays with electrons in the final state

Very promising performance anticipates exciting results from LHCb Physics programme in Run3

ICNFP 2024, Lais Lavra

<u>_HCb-FIGURE-2024-007</u>

LHCb Upgrade II

LHCb in Run5 & 6: Another fully new detector to exploit the flavour physics potential of the HL-LHC

 $\mathcal{L} = 1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ $\mathcal{L}_{int} = 300 \text{ fb}^{-1}$ $\mu \approx 40$

Target: 300 fb^{-1} by the end of Run6 (~2040)

Goal: same performance as in Run 3, but with ~7 times the pileup of Run 3

- Addition of precise timing information
- Replace almost all subdectors + new detectors to improve performance

Intense and attractive R&D program is ongoing

LHCb Upgrade I & II projections

CPV and mixing in charm

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS		
EW Penguins							
$\frac{1}{B_{V}} \frac{1}{(1 < a^2 < 6)} CeV^2 c^4)$	0.1[274]	0.025	0.036	0.007	_		
$R_{K} (1 < q < 0 \text{ GeV } c)$	0.1 [274] 0.1 [275]	0.020	0.030	0.001			
n_{K^*} (1 < q < 0 GeV c)	0.1 [275]	0.031	0.032		_		
$R_{\phi}, R_{pK}, R_{\pi}$	-	0.08, 0.06, 0.18	-	0.02, 0.02, 0.05	-		
CKM tests							
γ , with $B_s^0 \to D_s^+ K^-$	$(^{+17}_{-22})^{\circ}$ [136]	4°	_	1°	_		
γ , all modes	3° $(+5.0)^{\circ}$ [167]	1.5°	1.5°	0.35°	_		
$\sin 2\beta$, with $B^0 \rightarrow J/\psi K_0^0$	0.013 0.04 [609]	0.011	0.005	0.003	_		
ϕ with $B^0 \rightarrow I/\psi\phi$ 20	$0 \mathrm{mrad} \frac{49 \mathrm{mrad}}{100 \mathrm{mrad}} [44]$	14 mrad	_	4 mrad	22 mrad [610]		
ϕ_s , with $D_s \to D^+ D^-$	170 mrad [40]	25 mrad		0 mrad	22 mad [010]		
$\psi_s, \text{ with } D_s \to D_s D_s$	170 mad [49]	30 mad		9 miau 11	The day standar [611]		
φ_s^{***} , with $B_s^* \to \varphi \varphi$	154 mrad [94]	39 mrad	_	11 mrad	Under study [611]		
$a_{\rm sl}^{\rm s}$	33×10^{-4} [211]	10×10^{-4}	-	3×10^{-4}	-		
$ V_{ub} / V_{cb} $	$6\% \ [201]$	3%	1%	1%	-		
$B^0_{s}, B^0 { ightarrow} \mu^+ \mu^-$							
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B^0_* \to \mu^+ \mu^-)$) 90% [264]	34%	_	10%	21% [612]		
T_{P0} $u+u-$	22% [264]	8%	_	2%	_		
$S_{s} \rightarrow \mu + \mu$		_	_	0.2	_		
$b \rightarrow c\ell^- \nu_l \text{ LUV studies}$							
$R(D^*)$	$0.026 \ [215, 217]$	0.0072	0.005	0.002	-		
$R(J/\psi)$	$0.24 \ [220]$	0.071	—	0.02	_		
Charm							
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [613]	$1.7 imes 10^{-4}$	$5.4 imes 10^{-4}$	$3.0 imes 10^{-5}$	_		
$A_{\Gamma} (\approx x \sin \phi) \qquad 2.9 \times 10^{-4}$	2.8×10^{-4} [240]	4.3×10^{-5}	3.5×10^{-4}	1.0×10^{-5}	_		
$x \sin \phi$ from $D^0 \rightarrow K^+ \pi^-$	13×10^{-4} [228]	3.2×10^{-4}	4.6×10^{-4}	8.0×10^{-5}	- -		
$x \sin \phi$ from multibody decays		$(K3\pi)$ 4.0 × 10 ⁻⁵	$(K_{2}^{0}\pi\pi)$ 1.2 × 10 ⁻⁴	$(K3\pi)$ 8.0 × 10 ⁻⁶	2/		

CERN-LHCC-2018-027 With some edits for current LHCb

LHCB-TDR-023

Summary

LHCb Highlights on rare decays

- LHCb collected 9 fb^{-1} of high-quality data from 2011 to 2018
- Provides an excellent laboratory for studying rare decays
- Extensive physics program for testing SM, searching for NP, and exploring new decay modes
- Many analyses are currently ongoing at LHCb

LHCb Upgrade I

- Calibration and operations are progressing
- Early Run3 data show excellent performance

Plans underway for LHCb Upgrade II

• R&D in new detectors is ongoing

Thank you for your attention!!

BACKUP SLIDES

LHCb Upgrade(s)

