Searches for hidden sectors and lepton flavour violation in kaon decays at NA62

Marco Mirra - INFN Napoli on behalf of the NA62 collaboration

XIII International Conference on New Frontiers in Physics 2024

Kolymbari - September 3rd, 2024

The NA62 experiment at CERN

A fixed target experiment at the CERN SPS dedicated to the study of rare decays in the kaon sector. Currently in NA62: ~300 participants, ~ 30 institutions from 11 countries

Main NA62 goal: BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) measurement to 15% precision using the decay-in-flight technique.

Searches for hidden sectors and lepton flavour violation in kaon decays

This talk

Searches of exotic decays with NA62 in beam-dump mode

See S. Ghinescu talk

NA62 timeline and datasets

- ✓ Run 1 (2016–18): N_K~10¹³ useful K+ decays with the main trigger
 - Sample 2016 (30 days, ~1.3×10¹² ppp): 2×10¹¹ useful K⁺ decays
 - Sample 2017 (160 days, ~ 1.9×10¹² ppp): 2×10¹² useful K⁺ decays
 - Sample 2018 (217 days, ~ 2.3×10¹² ppp): 4×10¹² useful K⁺ decays
- ✓ Run 2 (2021−...): in progress (up to 3×10¹² ppp), approved till LS3

≻ Kinematic reconstruction: M²_{miss}=(P_K − P_π)², σ_{M²_{miss}}=10⁻³GeV²/c⁴ at K⁺ → π⁺π⁰
 ≻ Time resolution to match beam and daughter particle information: ~100ps

> PID detectors to suppress bkg with μ^+ or e^+ in the final state for the main analysis: μ vs π rejection of O(10⁷) for 15 < p(π^+) < 35 GeV

Small angle veto (SAV) Two shashlik calorimeters, IRC and SAC, to cover $\theta < 1$ mrad

> Photon vetoes to suppress bkg with π^0 in the final state for the main analysis: 10⁸ rejection of π^0 for $E(\pi^0) > 40$ GeV

Performances

- \checkmark Excellent time resolution $\mathcal{O}(100 \text{ ps})$ to match beam and daughter particle information
- ✓ **Kinematics:** rejection of main *K* modes 10⁴ via kinematics reconstruction
- ✓ PID capability: μ vs π rejection of O(10⁷) for 15 < p(π^+) < 35 GeV
- ✓ **High-efficiency veto:** 10^8 rejection of π^0 for E(π^0) > 40 GeV

The beam and detector of the NA62 experiment at CERN, 2017 JINST 12 P0502

NA62 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ result - Run 1

$K^+ \to \pi^+ X_{inv}$: a $K^+ \to \pi^+ \nu \bar{\nu}$ spin-off

0.3 ×10⁻⁹

0.25

0.2

Observed UL Expected UL

± 1σ $\pm 2\sigma$

Long-lived X or $X \rightarrow$ invisible

JHEP 06 (2021) 093

- Signal regions R1,R2: peak search for $K^+ \rightarrow \pi^+ X$ (X = invisible), $0 \le m_x \le 110$ MeV/c² and $154 \le m_X \le 260 \text{ MeV/c}^2$.

03/09/2024 M. Mirra

10 Searches for hidden sectors and lepton flavour violation in kaon decays

$K^+ ightarrow \pi^+ \pi^0$, $\pi^0 ightarrow inv$: a $K^+ ightarrow \pi^+ u \overline{ u}$ spin-off

JHEP 02 (2021) 201

- Search for $\pi^0 \rightarrow invisible$ in the $\pi^+\pi^0$ region (~10% of Run1 data):
- Negligible SM rate $(\pi^0 \rightarrow 4\nu)$
- **Observation = BSM physics.**
- Rejection of $K^+ \to \pi^+ \pi^0(\gamma), \pi^0 \to \gamma \gamma$ decays: simulations based on single-photon efficiency measurements with $K^+ \to \pi^+ \pi^0$ decays
- Expected $\pi^0 \rightarrow \gamma \gamma$ events: 10^{+22}_{-8} , events observed: 12.

03/09/2024 M. Mirra

Searches for hidden sectors and lepton flavour violation in kaon decays 11

$K^+ ightarrow \pi^+ X$ searches

Limits on BRs for $K^+ \to \pi^+ X_{inv}$ and $K^+ \to \pi^+ \pi^0$, $\pi^0 \to inv$ translate to parameter space for hidden-sector portals

Interpretation shown here: dark scalar below the K mass

03/09/2024 M. Mirra Searches for hidden sectors and lepton flavour violation in kaon decays

12

Hidden sectors with $K^+ \rightarrow \pi^+ e^- e^+ e^- e^+$

- ✓ SM decay: BR_{SM}($K_{\pi 4e}$)=(7.2±0.7)×10⁻¹¹ [Husek, PRD106 (2022)]
- ✓ Channel with pair production of dark mediators $K^+ \to \pi^+ X (\to e^- e^+) X (\to e^- e^+)$:

QCD Axion Like Particle (ALP):

- Explains the "17 MeV anomaly" for atomic nuclei
- Expect $K^+ \rightarrow \pi^+ aa > 2 \times 10^{-8}$ for m_a=17 MeV. [Alves, PRD103 (2021) 055018; Hostert and Pospelov, PRD105 (2022) 015017]

Prompt dark cascade process:

- ✓ For the SM decay, BR_{SM}(K_{π4e}) < 1.4 ×10⁻⁸ at 90% CL
- Upper limits at 90% CL are obtained at the level of 10⁻⁹ for the BR of the two prompt decay chains involving hidden-sector mediators.
- QCD axion is excluded as explanation of the 17 MeV anomaly

03/09/2024 M. Mirra

Searches for hidden sectors and lepton flavour violation in kaon decays 13

HNL production at NA62

- > Numbers of K^+ decays in fiducial volume: $N_K = 3.5 \times 10^{12}$ in e^+ mode; $N_K = 4.3 \times 10^9$ in μ^+ mode
- > Squared missing mass $m_{miss}^2 = (P_K P_l)^2$ using STRAW and GTK detectors
- > HNL production signal: a spike above continuous missing mass spectrum

HNL results

- ✓ For $|U_{e4}|^2$, complementary to search for $\pi^+ \rightarrow e^+ N$ at PIENU.
- ✓ For $|U_{\mu4}|^2$, complementary to search for $K^+ \rightarrow \mu^+ N$ at BNL-E949.
- ✓ In both cases, complementary to HNL decay searches at T2K.
- ✓ Future pion experiments might reach the seesaw bound.
- ✓ With slight modifications to the $K^+ \to \mu^+ N$ analysis, upper limits at 90% CL on BR($K^+ \to \mu^+ \nu X$) - with X a scalar or vector mediator in the mass range 10-370 MeV/c² from $O(10^{-5})$ for low m_X values to $O(10^{-7})$ for high m_X values. Also a 90% CL upper limit at 1.0 × 10⁻⁶ on the BR($K^+ \to \mu^+ \nu \nu \overline{\nu}$) is obtained - *PLB 816 (2021) 136259*

Search for LNV in $K^+ \rightarrow \pi^-(\pi^0) e^+ e^+$

- Whole NA62 Run1 data set analysed.
- $K^+ \rightarrow \pi^+ e^+ e^-$ as normalization channel.
- K⁺ decays in the FV: (1.015±0.032)×10¹²
- Invariant mass $m(\pi^-e^+ e^+)$ and $m(\pi^-\pi^0e^+e^+)$ used to select signal.
- K⁺ → π⁻e⁺ e⁺: (LKr + RICH)-based e⁺ ID to suppress π⁰ Dalitz decay and K⁺ → π⁺e⁺ e⁻ with π⁺→e⁺ and e⁻/π⁻ misID
 K⁺ → π⁻π⁰e⁺ e⁺: π⁰ reconstructed in LKr calorimeter via the π⁰→γγ

decay.

PLB830 (2022) 137172

Search for $K^+ \to \pi^- \mu^+ \mu^+$ and $K^+ \to \mu^- \nu e^+ e^+$

Search for $K^+ \rightarrow \pi \mu e$ decays

PRL 127 (2021) 131802

Search for $K^+ \rightarrow \pi^0 \pi \mu e$ decays

Mode	Expected background	Observed candidates	Upper limit of BR at 90% CL
$K^+ ightarrow \pi^0 \pi^- \mu^+ e^+$	0.33±0.07	0	2.9×10 ⁻¹⁰
$K^+ ightarrow \pi^0 \pi^+ \mu^- e^+$	0.004±0.003	0	3.1×10 ⁻¹⁰
$K^+ ightarrow \pi^0 \pi^+ \mu^+ e^-$	0.29±0.07	0	5.0×10 ⁻¹⁰

New results to be published

Summary

- ✓ The NA62 collaboration is continuing to fully exploit the data collected during Run 1 in 2016-2018 and it has the opportunity to directly search for a plethora of hidden sector particles and LNF/LNV decays in kaon physics
- ✓ NA62 LFV/LNV programme: stringent limits on 10 decay modes
- ✓ Searches for hidden sectors in kaon decays at NA62 address a range of PBC benchmark scenarios
 - $K^+ \rightarrow \pi^+ X_{inv}$: dark scalar and ALP
 - $K^+ \rightarrow l^+ N$: heavy neutral leptons
 - Non-minimal scenarios, e.g. $K^+ \rightarrow \pi^+ a a$.
- ✓ NA62 at CERN is collecting data from 2016 till at least 2025
 - World's largest multi-purpose sample of *K*⁺ decays
 - First measurement of the ultra-rare $K^+ \to \pi^+ \nu \overline{\nu}$ decay

