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large. This drift was the result of a variety of environmen-
tal factors, most notably temperature variations. Roughly
10% of the upydown sweeps were rejected because anoma-
lously large drift resulted in an unsatisfactory convergence
for the fit, as evidenced by an anomalously large x2, a
nonphysical value for a0, and an inconsistent result for b
which was quite constant. Also, those sweeps where the
net change in dV between start and finish corresponded
to a force greater than 4 3 1025 dyn were rejected; in all,
the final data set comprises 216 upydown sweeps. Quite
often, as the absolute separation drifted, the plates would
contact before the end of a complete up sweep. The step
at which this occurred could be unambiguously determined
by a sudden jump in the feedback signal. Roughly eight
steps on the down sweep had to be rejected because af-
ter such a large perturbation, the feedback system required
several minutes to reestablish equilibrium.
Assuming that the functional form for the Casimir force

is correct, its magnitude was determined by using linear
least squares to determine a parameter d for each sweep
such that

Fm
c said ≠ s1 1 ddFT

c said 1 b0 . (9)
In this context, b0 should be zero, and for the complete
data set, b0 , 5 3 1027 dyn (95% confidence level).
The average over the 216 sweeps gives d ≠ 0.01 6 0.05,
and this is taken as the degree of precision of the
measurement. There was no evidence for any variation
of d depending on the region of the plates used for the
measurement.
The most striking demonstration of the Casimir force

is given in Fig. 4. The agreement with theory, with no

FIG. 4. Top: All data with electric force subtracted, averaged
into bins (of varying width), compared to the expected Casimir
force for a 11.3 cm spherical plate. Bottom: Theoretical
Casimir force, without the thermal correction, subtracted from
top plot; the solid line shows the expected residuals.

adjustable parameters, is excellent. It should be noted that
the closest approach is about 0.6 mm; this limit could be
caused by either dirt on the surfaces, or by an instability
of the feedback system. The Casimir force is nonlinear
and increases rapidly at distances less than 0.5 mm. With
the plates separated by 10 mm, the feedback loop became
unstable when a 700 mV potential difference between the
plates was applied; the change in force with distance (the
effective spring constant) in this case is dFeyda ≠ 1.5 3
1023 dynymm, which is equal to dFcyda at a ≠ 0.5 mm.
In conclusion, we have given an unambiguous demon-

stration of the Casimir force with accuracy of order 5%.
Our data is not of sufficient accuracy to demonstrate the
finite temperature correction, as shown in Fig. 4(b). Also,
given a plasma frequency for Au of order vpy2p ¯
6 3 1014 Hz, Eq. (5) gives a correction of order 20%
at the closest spacings; our data does not support such
a deviation. However, the simple frequency dependence
of the electrical susceptibility used in the derivation of
Eq. (5) is not correct for Au, the index of refraction of
which has a large imaginary component above the plasma
frequency; a rough estimate using the tabulated complex
index [14] limits the conductivity correction as no larger
than 3%, which is consistent with our results [15].
I thank Dev Sen (who was supported by the UW NASA

Space Grant Program) for contributions to the early stages
of this experiment, and Michael Eppard for assistance
with calculations.
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of Lz and hence gives no contribution to the Casimir force.
Therefore we safely drop this term hereafter. Thus, our
problem boils down to the calculation of Sðs; b̄Þ. We rewrite
Eq. (30) by multiplying it with the integral form of ΓðsÞ and
then divide by ΓðsÞ as

Sðs; b̄Þ ¼
X∞

n¼−∞

1

ΓðsÞ

Z
∞

0
ðn2 þ b̄2Þ−sus−1e−udu: ð29Þ

We change the integration variable from u to v ¼
u=ðn2 þ b̄2Þ so that the integral becomes

Sðs; b̄Þ ¼
X∞

n¼−∞

1

ΓðsÞ

Z
∞

0
vs−1e−n

2v−b̄2vdv

¼
X∞

m¼−∞

ffiffiffi
π

p

ΓðsÞ

Z
∞

0
vs−3=2e−π

2m2=v−b̄2vdv; ð30Þ

wherewe used Poisson’s summation formula. The termwith
m ¼ 0 yields the Gamma function, while the terms with
m ≠ 0 take the form of the integral representation for the
modified Bessel function of the second kind. We, therefore,
arrive at

Sðs; b̄Þ ¼
ffiffiffi
π

p
b̄1−2s

ΓðsÞ

"
Γ
#
s −

1

2

$
þ 4

X∞

m¼1

K1
2−s

ð2πmb̄Þ
ðπmb̄Þ12−s

%
:

ð31Þ

Plugging this to the Casimir energy (27), we get

E ¼ E∞ þ Ereg

¼ E∞ þ b4Lz

16π2
X∞

m¼1

"
K1ðmbLzÞ
mbLz

−
K2ðmbLzÞ
ðmbLzÞ2

%
:

Here, the energy per unit transverse area, E, includes a
divergent portion,

E∞ ¼ −
5b4Lz

512π3
Γð0Þ: ð32Þ

But the corresponding energy density E∞=Lz is independent
of Lz. Thus, we can harmlessly subtract this energy density
irrelevant to the Casimir force, by shifting a reference level
of the energy density.
Finally, the Casimir force per unit transverse area is

given by the derivative of Ereg with respect to Lz, that is,

FðbÞ ¼ −
∂Ereg

∂Lz

¼ −
b4

16π2
X∞

m¼1

"
3K2ðmbLzÞ
ðmbLzÞ2

− K0ðmbLzÞ
%
: ð33Þ

This is our central result. We note that the limiting
behaviors K2ðxÞ → 2x−2 and K0ðxÞ → log x for x → 0
result in

Fð0Þ≡ lim
b→0

FðbÞ ¼ −
3

8π2L4
z

X∞

m¼1

1

m4
¼ −

π2

240L4
z
; ð34Þ

which retrieves the well-known result within the Maxwell
electrodynamics.
The b-dependence of the Casimir force (33) is shown

in Fig. 2. One can observe that the Casimir force is
repulsive when bLz > 2.38. By tuning the distance
between two plates while keeping bLz larger than 2.38,
the strength of the repulsive Casimir force is, in principle,
arbitrarily tunable. The ratio FðbÞ=Fð0Þ takes the minimum
value −0.32 for bLz ¼ 4.26. In the physical units, this
extremal value of repulsive force is estimated as
3.95 × 10−5ðb4½μm4&Þ dyn=cm2. We note that our results
qualitatively match Ref. [45] for bLz ≪ 1. In the Appendix,
we present an alternative approach developed in Ref. [45]
to reproduce exactly the same numerical result of FðbÞ as in
Fig. 2. Such an independent calculation based on different
subtraction procedures serves as a double check for our
results and a confirmation for our scheme to subtract
infinities in Eqs. (20), (25), and (32).

V. CONCLUSION

We demonstrated a repulsive component of the Casimir
force in axion electrodynamics by formulating its explicit
expression in an analytically closed form. We circumvented
the no-go theoremwhich tends to forbid the repulsiveCasimir
force between two objects with reflection symmetry. Our
underlying idea consists in the intrinsic parity symmetry
breaking in the chiral vacuum between the plates, which is
quite analogous to a recent proposal in Ref. [45].
Our next step is to seek for experimental realization of

our theoretical consequence. Our physical setup, in which
the θ-angle has a spatial gradient perpendicular to plates,

FIG. 2. Casimir force as a function of the dimensionless
distance scaled with b.
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Table 2
Model parameters for Cd3As2 [79,80] and Na3Bi [12].

Parameters Cd3As2 [79,80] Na3Bi [12]

A (eVÅ) 0.889 2.4598
C0 (eV) −0.0145 −0.06382
C1 (eVÅ2) 10.59 8.7536
C2 (eVÅ2) 11.5 −8.4008
M0 (eV) −0.0205 −0.08686
M1 (eVÅ2) 18.77 10.6424
M2 (eVÅ2) 13.5 10.361
ax = ay (Å) 12.67 5.448
az (Å) 25.48 9.655

ods for two bands are slightly different (τCas = 20 and 18). Then, 
for the total Casimir energy, two types of oscillations are com-
bined and induce a “beat” of Casimir energy, where its period is 
1/( 1

18 − 1
20 ) = 180. Such a beating behavior of the Casimir effect, 

which is a periodic enhancement and suppression, will be useful 
for tuning the Casimir effect in DSMs by applying an external mag-
netic field.9

5. Casimir effect in Cd3As2 and Na3Bi

Here, we evaluate the Casimir effect for Dirac electrons re-
alized in Cd3As2 and Na3Bi which are regarded as 3D Dirac 
semimetals [12,13]. For experimental evidence, see Refs. [60–65]
for Cd3As2, Refs. [66–73] for Cd3As2 thin films, Refs. [74,75] for 
Na3Bi, and Refs. [76–78] for Na3Bi thin films. In particular, our 
setup is suitable for (001)-oriented thin films of Cd3As2 [70–73]. 
A low-energy effective Hamiltonian near the DPs was proposed in 
Refs. [12,13] (also see Supplementary Material S1), where the four-
band dispersion relations (the spin-up and spin-down bands are 
degenerate) are given by

ωDSM
± = ϵ0 ±

√
M2 + A2(k2

x + k2
y), (6)

where ϵ0 = C0 + C1k2
z + C2(k2

x +k2
y) and M = M0 + M1k2

z + M2(k2
x +

k2
y). See Table 2 for the model parameters. In lattice space, we re-

place the momentum as k2
i → 1

a2
i

sin2 aki for the term proportional 

to A and k2
i → 1

a2
i
(2 − 2 cos aki) for the other terms. The dispersion 

relations are shown in Figs. 5(a) and (b). Note that these disper-
sion relations are reliable only near the DPs, but it is enough to 
discuss qualitative behaviors of the Casimir effect.

In Figs. 5(c) and (d), we show the numerical results for the 
Casimir energy and Casimir coefficient. From these figures, we find 
an oscillation of the Casimir energy. This oscillation is determined 
by the complicated band structures including not only the two DPs 
but also the four FPs.10 Here, a DP and two FPs are close enough, 
so that the oscillation period is roughly determined by only the 
positions of DPs. From the model parameters, we can roughly 
estimate azkDP ∼

√
−a2

z M0/M1 ∼ π/3.73 and π/3.60 for Cd3As2
and Na3Bi, respectively. By substituting these values into the for-
mula (3), we expect τCas = π/azkDP ∼ 3.73 and 3.60, respectively. 
These estimates are consistent with the numerical results: we can 
find τCas ∼ 3.5. For example, when Nz is a multiple of 7, C [3]

Cas is 
stronger than the values at other Nz . Thus, the formula (3) is use-
ful even for realistic materials. Experimentally, one can change the 
film thickness L ≡ az Nz , and the oscillation periods for Cd3As2 and 

9 For a quantitative analysis with the zeroth LL of Cd3As2, see Supplementary 
Material S3.
10 This is a simplified interpretation focusing on the Fermi points along the kz axis 

at kx = ky = 0. Precisely speaking, the band structures across the Fermi energy at 
kx ≠ 0 and/or ky ≠ 0 also contribute to the Casimir effect.

Fig. 5. Dispersion relations, Casimir energy, and Casimir coefficient for Dirac elec-
trons in Cd3As2 or Na3Bi thin films, described by the model (6). (a)-(b) Dispersion 
relations in the z direction. (c)-(d) Casimir energy and Casimir coefficient for (001)-
oriented thin films. Inset: the period of τCas ∼ 3.5 is shown as the colored or 
uncolored regions.

Na3Bi are expected to be L = azτCas ∼ 9.5 nm and 3.5 nm, respec-
tively.

Note that, as shown in Refs. [12,13,53,54,81,82], the discretiza-
tion of kz in DSM thin films is regarded as “energy gaps” opened 
at the DPs, and hence topological phase transition as a function of 
the film thickness can occur. For instance, a thickness-dependent 
periodicity of the topological invariant in Cd3As2 thin films was 
shown in Fig. 4 in Ref. [13]. This periodicity corresponds to that 
of the Casimir energy. Thus, the Casimir effect is another phe-
nomenon induced by the discretization of kz and is regarded as an 
indirect signal of topological phase transition. Also, we emphasize 
that even if the Fermi level is slightly shifted or gaps are opened 
by external perturbations, such as strain [83], the node-induced 
oscillation is qualitatively unchanged (see Supplementary Material 
S1).

6. Experimental observables

Finally, we comment on experimental realization of the Casimir 
effect in DSMs/WSMs. In experiments, the thickness of thin films 
(L ∝ Nz , where az is usually fixed) is controllable by microfabri-
cation technology, and one can investigate the thickness depen-
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Table 2
Model parameters for Cd3As2 [79,80] and Na3Bi [12].

Parameters Cd3As2 [79,80] Na3Bi [12]

A (eVÅ) 0.889 2.4598
C0 (eV) −0.0145 −0.06382
C1 (eVÅ2) 10.59 8.7536
C2 (eVÅ2) 11.5 −8.4008
M0 (eV) −0.0205 −0.08686
M1 (eVÅ2) 18.77 10.6424
M2 (eVÅ2) 13.5 10.361
ax = ay (Å) 12.67 5.448
az (Å) 25.48 9.655

ods for two bands are slightly different (τCas = 20 and 18). Then, 
for the total Casimir energy, two types of oscillations are com-
bined and induce a “beat” of Casimir energy, where its period is 
1/( 1

18 − 1
20 ) = 180. Such a beating behavior of the Casimir effect, 

which is a periodic enhancement and suppression, will be useful 
for tuning the Casimir effect in DSMs by applying an external mag-
netic field.9

5. Casimir effect in Cd3As2 and Na3Bi

Here, we evaluate the Casimir effect for Dirac electrons re-
alized in Cd3As2 and Na3Bi which are regarded as 3D Dirac 
semimetals [12,13]. For experimental evidence, see Refs. [60–65]
for Cd3As2, Refs. [66–73] for Cd3As2 thin films, Refs. [74,75] for 
Na3Bi, and Refs. [76–78] for Na3Bi thin films. In particular, our 
setup is suitable for (001)-oriented thin films of Cd3As2 [70–73]. 
A low-energy effective Hamiltonian near the DPs was proposed in 
Refs. [12,13] (also see Supplementary Material S1), where the four-
band dispersion relations (the spin-up and spin-down bands are 
degenerate) are given by

ωDSM
± = ϵ0 ±

√
M2 + A2(k2

x + k2
y), (6)

where ϵ0 = C0 + C1k2
z + C2(k2

x +k2
y) and M = M0 + M1k2

z + M2(k2
x +

k2
y). See Table 2 for the model parameters. In lattice space, we re-

place the momentum as k2
i → 1

a2
i

sin2 aki for the term proportional 

to A and k2
i → 1

a2
i
(2 − 2 cos aki) for the other terms. The dispersion 

relations are shown in Figs. 5(a) and (b). Note that these disper-
sion relations are reliable only near the DPs, but it is enough to 
discuss qualitative behaviors of the Casimir effect.

In Figs. 5(c) and (d), we show the numerical results for the 
Casimir energy and Casimir coefficient. From these figures, we find 
an oscillation of the Casimir energy. This oscillation is determined 
by the complicated band structures including not only the two DPs 
but also the four FPs.10 Here, a DP and two FPs are close enough, 
so that the oscillation period is roughly determined by only the 
positions of DPs. From the model parameters, we can roughly 
estimate azkDP ∼

√
−a2

z M0/M1 ∼ π/3.73 and π/3.60 for Cd3As2
and Na3Bi, respectively. By substituting these values into the for-
mula (3), we expect τCas = π/azkDP ∼ 3.73 and 3.60, respectively. 
These estimates are consistent with the numerical results: we can 
find τCas ∼ 3.5. For example, when Nz is a multiple of 7, C [3]

Cas is 
stronger than the values at other Nz . Thus, the formula (3) is use-
ful even for realistic materials. Experimentally, one can change the 
film thickness L ≡ az Nz , and the oscillation periods for Cd3As2 and 

9 For a quantitative analysis with the zeroth LL of Cd3As2, see Supplementary 
Material S3.
10 This is a simplified interpretation focusing on the Fermi points along the kz axis 

at kx = ky = 0. Precisely speaking, the band structures across the Fermi energy at 
kx ≠ 0 and/or ky ≠ 0 also contribute to the Casimir effect.

Fig. 5. Dispersion relations, Casimir energy, and Casimir coefficient for Dirac elec-
trons in Cd3As2 or Na3Bi thin films, described by the model (6). (a)-(b) Dispersion 
relations in the z direction. (c)-(d) Casimir energy and Casimir coefficient for (001)-
oriented thin films. Inset: the period of τCas ∼ 3.5 is shown as the colored or 
uncolored regions.

Na3Bi are expected to be L = azτCas ∼ 9.5 nm and 3.5 nm, respec-
tively.

Note that, as shown in Refs. [12,13,53,54,81,82], the discretiza-
tion of kz in DSM thin films is regarded as “energy gaps” opened 
at the DPs, and hence topological phase transition as a function of 
the film thickness can occur. For instance, a thickness-dependent 
periodicity of the topological invariant in Cd3As2 thin films was 
shown in Fig. 4 in Ref. [13]. This periodicity corresponds to that 
of the Casimir energy. Thus, the Casimir effect is another phe-
nomenon induced by the discretization of kz and is regarded as an 
indirect signal of topological phase transition. Also, we emphasize 
that even if the Fermi level is slightly shifted or gaps are opened 
by external perturbations, such as strain [83], the node-induced 
oscillation is qualitatively unchanged (see Supplementary Material 
S1).

6. Experimental observables

Finally, we comment on experimental realization of the Casimir 
effect in DSMs/WSMs. In experiments, the thickness of thin films 
(L ∝ Nz , where az is usually fixed) is controllable by microfabri-
cation technology, and one can investigate the thickness depen-
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A B S T R A C T

The Casimir e�ect is a quantum phenomenon induced by the zero-point energy of relativistic fields
confined in a finite-size system. This e�ect for photon fields has been studied for a long time, while
the realization of counterparts for fermion fields in Dirac/Weyl semimetals is an open question. We
theoretically demonstrate the typical properties of the Casimir e�ect for relativistic electron fields in
Dirac/Weyl semimetals and show the results from an e�ective Hamiltonian for realistic materials such
as Cd3As2 and Na3Bi. We find an oscillation of the Casimir energy as a function of the thickness of the
thin film, which stems from the existence of Dirac/Weyl nodes in momentum space. Experimentally,
such an e�ect can be observed in thin films of semimetals, where the thickness dependence of
thermodynamic quantities is a�ected by the Casimir energy.

1. Introduction

The well-known Casimir e�ect [1–3] is a quantum phe-
nomenon for photon fields between two parallel plates with
nanoscale distance, which results in mechanical/thermodynamic
e�ects, such as the Casimir force and Casimir pressure (see
Refs. [4–8] for reviews). Thus, the Casimir e�ect for photons
may play an important role in the field of nanophotonics [9].

In general, the Casimir e�ect is not limited to photonic
systems, and the understanding of fermionic counterparts
is an important and open issue. For example, the Casimir
e�ect for free electron fields in vacuum is suppressed by
the electron mass, so that its observation is di�cult. On
the other hand, massless fermions are realized in solid-
state systems such as Dirac semimetals (DSMs) [10–13]
and Weyl semimetals (WSMs) [14–16] (see Ref. [17] for
a review). Small-size systems such as thin films of three
dimensional (3D) material [see Fig. 1(a)], narrow nanorib-
bons, and short nanowires may induce Casimir e�ects for
fermion fields. The Casimir energy is a part of the free en-
ergy (or thermodynamic potential) of the system and should
contribute to the internal pressure and other quantities. In
such materials, if electrons carry electric or spin degrees of
freedom, the understanding of the electronic Casimir e�ect
could be essential for electronics and spintronics using thin
films. In Table 1, we emphasize the comparison between the
conventional works and our study.1

In this Letter, we theoretically investigate the Casimir
e�ect originated from Dirac/Weyl fermion fields inside thin
films of 3D DSMs/WSMs. In particular, we point out an
importance of the Dirac points (DPs) or Weyl points (WPs)
that exists at a nonzero k = (k

x
, k

y
, k

z
) in momentum

† E-mail: katsumasa.nakayama@riken.jp (corresponding author)
‡ E-mail: k.suzuki.2010@th.phys.titech.ac.jp (corresponding author)
ORCID(s): 0000-0003-0270-8523 (K. Nakayama); 0000-0002-8746-4064

(K. Suzuki)
1The purpose of our paper should be distinguished from photonic

Casimir e�ects between topological insulators [18–21], between Chern
insulators [22–24], between Dirac/Weyl semimetals [25–29], and inside
chiral materials [30–32] (see Refs. [33, 34] for reviews).

Table 1
Comparison of Casimir effects.

Conventional works This work
Field photons Dirac/Weyl electrons
System QED vacuum bulk of thin film
Boundary two plates, etc. edge of thin film
Space continuous lattice
Applications photonics electronics/spintronics

(b)

(c)

𝑘DP/WP𝑧

Figure 1: (a) Schematic picture of Casimir effect in thin films
of three-dimensional materials. (b) An example of energy-
momentum dispersion relation !(k) for electrons in Dirac/Weyl
semimetals. (c) Dispersion relation !(k

z
) for the z component

of momentum at k
x
= k

y
= 0. The Dirac or Weyl points are

located at k = (0, 0,±kDP_WP).

space, as shown in Figs. 1(b) and (c). We find that these
points (or nodes) induce a novel type of Casimir e�ect: An
oscillation of Casimir energy as a function of the film thick-
ness, which we call the Dirac/Weyl-node-induced oscillating
Casimir e�ect. Note that this phenomenon does not occur for
conventional fields in elementary particle physics, such as
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condensate 
The spiral structure of scalar ( ) and pseudoscalar ( ) 
condensates

σ π0

⟨q̄q⟩ → M cos( ⃗q ⋅ ⃗r)

⟨q̄iγ5q⟩ → M sin( ⃗q ⋅ ⃗r)

the critical chemical potential !c1;2, and it indicates a first-
order transition. Thus, the region of DCDW in the !-T
phase diagram is surrounded by the first-order transition
lines.

We show the resultant phase diagram in Fig. 10, where
the usual chiral-transition line is also given for reference.
Comparing phase diagrams with and without q, we find
that the DCDW phase emerges in the area (shaded area in
Fig. 10) which lies just outside the boundary of the ordi-
nary chiral transition. We thus conclude that DCDW is
induced by finite-density contributions and has the effect
to extend the chiral-condensed phase (M ! 0) to a low
temperature (Tc ! 50 MeV) and high-density region. The
above results suggests that QCD at finite density involves
rich and nontrivial phase structures, as well as color super-
conducting phases.

IV. SUMMARY AND OUTLOOKS

We have discussed the possibility of the dual chiral-
density wave in moderate-density quark matter within the
mean-field approximation, employing a 2-flavor and 3-
color NJL model. The mechanism of the density wave is
quite similar to the spin density wave in 3D electron
systems; the total-energy gain comes from the Fermi-sea
contribution in the deformed spectrum, while its amplitude
has a different origin corresponding to the chiral conden-
sation from the Dirac-sea effect.

In this paper, we have considered only the direct chan-
nels (Hartree terms) of the interaction. If the exchange
channels (Fock terms) are involved, there appear additional
interaction channels by way of the Fierz transformation
[19]. In particular, self-energies in axial-vector and tensor
channels related to a ferromagnetism [6,25] might affect
the density wave through nontrivial correlations among
them. Interactions in the p-p channels are also obtained

by the Fierz transformation, and their strength is smaller
than that of the direct channels by the factor of O"1=Nc#.
Because the Cooper instability is independent on the
strength of the interaction, it is interesting to investigate
the interplay among the density wave, superconductivity
[8,9,26], and the other ordered phases, e.g., chiral-density
waves mixing isospins which may cause a charge-density
wave due to difference of electric charges of u and d
quarks, as future studies.

Finally, it is worth mentioning fluctuation modes on the
density-wave phase, which give the excitation spectrum
and are important for the dynamical description of the
phase. In particular, Nambu-Goldstone modes are essential
degrees of freedom for low-energy phenomena and may
bring some observable consequences, e.g., slowing down
of star cooling through enhancement of specific heat due to
fluctuations of such low-energy modes.
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APPENDIX A: REGULARIZATION OF !vac

We regularize the Dirac-sea contributions to the poten-
tial !vac by applying Schwinger’s proper-time method.
!vac can be described in the form of the one-loop order
contribution,

"! $ !vav"q;M# %!N $ %
Z

C

d4k
i"2"#4

X

s$&
log

Ds

DN

(A1)

with D& $ k20 % E2
&"k# and DN $ k20 % k2 %m2;

(A2)

where !N is the normal vacuum contribution. Using the
identity for G 2 R

"G' i##%1 $ %i
Z 1

0
dsei"G'i##s; (A3)

we find

log
D& ' i#
DN ' i#

$ %
Z 1

0

ds
s
"ei"D&'i##s % ei"DN'i##s#: (A4)

By way of the Wick rotation, which is done simulta-
neously for k0 integration of !vac and !N,

FIG. 10. A phase diagram obtained from the thermodynamic
potential equation (35). The solid (dashed) line shows the chiral-
transition line without (with) the DCDW. The shaded area shows
the DCDW phase.

CHIRAL SYMMETRY AND DENSITY WAVES IN QUARK MATTER PHYSICAL REVIEW D 71, 114006 (2005)

114006-9

Prediction from NJL

DCDW

E. Nakano and T. Tatsumi (2005)
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Dispersion relations in DCDW
Four eigenvalues of Dirac field at q = (0,0,q)
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FIG. 2. (a) Dispersion relations of the four eigenmodes, Eqs. (6) and (7), at (M/⇤, q/⇤, µ/⇤) = (0.1, 0.6, 0, 6). (b) Each
contribution from the Dirac sea (red line) or the Fermi sea (blue line) and their sum (purple line).

PBC, the sum is over n = 0, 1, ..., Nz � 1 (or equivalently
n = 0, 1, ..., Nz).

Finally, we also define the dimensionless Casimir coef-
ficient on the lattice,

C [3]Lat
Cas ⌘ L3

zE
Lat
Cas = a3N3

zE
Lat
Cas. (17)

The quantities on the lattice, ELat
Cas and C [3]Lat

Cas , depend
on the lattice spacing a, but its continuum limit (a ! 0)
should coincide with Eqs. (11) and (12) in the continuum
theory (if the lattice regularization is appropriate):

C [3]
Cas = lim

a!0
C [3]Lat

Cas . (18)

E. Dispersion relations

We remark on the dispersion relations (6) and (7) for
quark fields in the DCDW phase. In Fig. 2(a), we show
the four eigenmodes in the DCDW phase. Here, the pa-
rameters are fixed as (M/⇤, q/⇤, µ/⇤, ) = (0.1, 0.6, 0.6),
where each quantity is dimensionless by dividing by a di-
mensional parameter ⇤. In this figure, the two touching
points of !� and !̃� are regarded as Weyl points, and
in addition, !� intersects the Fermi level at the Fermi
points (FPs). Furthermore, !+ also intersects the Fermi
level. Now, since we set q = µ for simplicity, the mo-
menta of the Weyl points of !� and the intersection be-
tween the Fermi level and !+ coincide.

Figure 2(b) shows each contribution from the Dirac
or Fermi sea and their sum. The Dirac-sea and Fermi-
sea contributions correspond to the absolute value of the
first and second terms of the integrand in Eq. (10), re-
spectively. These dispersion relations become flat bands
at low momentum and bend twice in the middle of the
dispersion relation. Such non-di↵erentiable points in
the dispersion relation generally lead to an oscillating
Casimir e↵ect.

In the next section, we will show plots as shown in
Fig. 2(b) for intuitively understanding the mechanism of
the Casimir e↵ect.

III. RESULTS

In this section, we show the results for the Casimir co-
e�cients in the low-, intermediate-, and high-density re-
gions, with the PBC (see Appendix A for the discussion
with the MIT bag boundary condition). In the follow-
ing, with ⇤ = 860 MeV, we fix the values of the order
parameters, M and q, at three µ (low-, intermediate, and
high-density regions) as those obtained in Ref. [46], where
the authors applied the mean-field approach in the NJL
model with the proper-time regularization.3

A. Oscillating Casimir e↵ect (virtual parameters)

We will see in the following section that the oscillating
Casimir e↵ect is attributed to the flat band e↵ect in the
total dispersion relation caused by the presence of Weyl
points. Therefore, in this subsection, we show how the
flat band induces the oscillating Casimir e↵ect by using
a virtual parameter set that is not a solution to the gap
equation of the NJL model but gives a typical flat band.
As typical parameters, we consider (M/⇤, q/⇤) =

(0.1, 0.6), as shown in Fig. 2. Then, the Casimir coef-
ficient defined as Eq. (12) is shown in Fig. 3. The ob-
tained results show the oscillating Casimir e↵ect. The

3 Note that the values of order parameters, M and q, in the NJL
model depend on regularization schemes. The Casimir energy
is a quantity independent of regularization schemes. Therefore,
once M and q are obtained by a regularization, we can calculate
the Casimir energy equivalently by any regularization (using the
fixed M and q).

ω± = k2
x + k2

y + ( k2
z + M2 ± q

2 )2 ω̃± = − k2
x + k2

y + ( k2
z + M2 ± q

2 )2

Wavenumber :  
Splitting of L/R ( )±

Amplitude of DCDW 
(Chiral cond.) : 
Gap of  and ω± ω̃±

arXiv: 2402.17638
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DCDW under Magnetic flelds
Magnetic Dual Chiral Density Wave (MDCDW) 

The magnetic field makes the DCDW phase more robust 
because of the effective 1dim space. 
MDCDW is realized in the interior of a neutron star

DCDW 
( )m > b, eH ≠ 0

 I. E. Frolov and V. Ch. Zhukovsky, (2010)

! being the characteristic energy scale. In what follows,
we denote these quantities with the same symbols as the
original ones, e.g., m stands for m=!, etc. We performed
integration over the quantum number n instead of summa-
tion when eH ! 1, thus being able to consider the limit
H ! 0with no singularities. The estimate of the maximum
relative and absolute error was set at the level of 10"3 and
10"8, respectively. We take the values of ! and

ffiffiffiffiffiffiffi
eH

p
from

0 up to 0.8; it should be noted that there is no physical sense
in considering high values of these parameters since 1 is
the (dimensionless) regularization constant in our model.
The critical value of the coupling constant is Gc ’ 3:27 in
our model. If H ¼ 0 and ! ¼ 0, spontaneous chiral sym-
metry breaking only occurs whenG>Gc; we take this fact
as the definition of Gc.

At present, an exact form of the one-particle energy
spectrum in the case of b? > 0 (m> 0) is not known, so
that comprehensive analysis of the problem cannot be
made. There is no strict guarantee that there are no global
minima of the thermodynamic potential somewhere in
the regionm> 0, b > 0, b? > 0whenH > 0,!> 0 since
one can construct a dimensionless ratio

ffiffiffiffiffiffiffi
eH

p
=! and the

latter may be related to the ratio b?=b. If this is true, the
DCDW wave vector orientation would be diverted from
the preferred direction ofH and the rotational symmetry of
the system would be completely broken. Nonetheless, it is

reasonable to believe that the global minima of " are
reached when b? ¼ 0 implying that the rotational symme-
try is still preserved. To test this to the extent possible, for
each minimum found (when H > 0), we studied the
behavior of the thermodynamic potential in the region of
b? close to zero. We actually calculated the second de-
rivative @2"=@b2?jb?!0 numerically, and we made use of
the explicit energy spectrum corrections (14) during the
evaluation of that quantity. The latter turned to be positive
everywhere, so, in this approximation, no instability of
the thermodynamic potential minima with respect to b?
has been found.
The results of numerical analysis in the case of T ¼ 0

and supercritical G ¼ 6 are presented in Figs. 1(a), 2, and
3. As one would expect, we recover the result obtained in
Ref. [20] in the limit H ! 0, see Fig. 3(a); and there is a
nontrivial behavior of the system when H > 0. The order
parameter b related to the DCDW wave vector (b ¼ q=2)
grows either smoothly (for the range of the chemical
potential ! up to some value) or discontinuously (for
higher values of !) with the increase of the magnetic field
strength H, the effect being more vivid for greater !, see
Fig. 2. There is also a gap corresponding to a transition
from a symmetric phase present in a weak field in dense
matter (we assume b ¼ 0 when m ¼ 0 although b has no
physical meaning in that case and can be set to have an
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0.0

0.2

0.4
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0.8

eH

a G 6

B

C

D

A
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0.0
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0.8

eH

b G 3

B

A

FIG. 1. Phase diagrams for (a) supercritical and (b) subcritical values of the coupling constant G at zero temperature. All quantities
are dimensionless. There is a symmetric massless phase A with no chiral condensate and two chirally broken massive phases B and C,
the latter being a phase with a nonzero matter density ", whereas " ¼ 0 in phase B. Massive phases B and C are spatially nonuniform
when H > 0. There is also a new phase D with a strong condensate inhomogeneity (retaining the presence of DCDW in the H ! 0
limit). The phase transitions are first order. There is a crossover between phases C and D in a magnetic field strong enough; we have
plotted the boundary between them with a dotted line in that region.

I. E. FROLOV, V. CH. ZHUKOVSKY, AND K.G. KLIMENKO PHYSICAL REVIEW D 82, 076002 (2010)

076002-6

and D in that region so we consider it as a crossover area
plotting the corresponding transition with a dotted line, and
we only plot a solid line between C and D in the region
where these phases can be distinguished clearly with a
noticeable change in their physical properties [see, e.g.,
Figs. 3(a) and 3(b)]. The position of the end point separat-
ing the solid and the dotted segment is therefore not fixed
precisely and should be chosen judiciously. In the most
general case, one may consider an infinite series of phases
fAng, fCng, and fDng when a magnetic field is present with
phase transitions corresponding to the order parameter
oscillations mentioned above (like it is done in
Refs. [59–61], see also a recent study in Ref. [35]).
However, since these oscillations are small in their relative
magnitude and tend to be smeared out with finite tempera-
ture taken into account, we consider such series as single
phases, and in this reasonable approximation, this situation
may be treated as a crossover between C and D. The main
result we have obtained is that there is a nonzero b in all

phases when H > 0 except for the symmetric one and the
case of ! ¼ 0. Smooth and linear growth of b with the
increase of H and ! is inherent in phase B. Symmetric
phase A now occupies a limited area on the diagram.
We have also examined the case of a subcritical G in

addition to the strong-coupling regime. The results for
G ¼ 3, T ¼ 0 are presented in Figs. 1(b) and 4. The
magnetic field is known to be a catalyst of the spontaneous
chiral symmetry breaking both in renormalizable and non-
renormalizable (NJL-like) theories (see, e.g., Refs. [66–75]
and also Refs. [59–61]), the latter demonstrating the emer-
gence of a dynamic fermion mass for arbitrary small values
of the coupling constant. This effect is present in our case
as well. The phase diagram structure obtained for our
model is similar to that derived in Ref. [61] for G<Gc

and phase B exhibits the same behavior of the order
parameter b growth as described above. Thus, DCDW
formation is preferable for the system in a wide range of
the coupling constant.
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FIG. 3. The order parameters as functions of the chemical potential for various values of the magnetic field strength at zero
temperature, and G ¼ 6. All quantities are dimensionless.
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= q/2

DCDW 
( )m > b ρ ≠ 0

DCDW( )m < b

M = b = 0
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Dispersion relations in MDCDW
Four eigenvalues of Dirac field at q = (0,0,q)

Wavenumber :  
Splitting of L/R ( )±

Amplitude of DCDW 
(Chiral cond. like) : 
Gap of  and ω± ω̃±

arXiv: 2402.17638

ω±,l = 2 |qf B | l + ( k2
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Definition of Fermi/Dirac sea
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FIG. 2. (a) Dispersion relations of the four eigenmodes, Eqs. (6) and (7), at (M/⇤, q/⇤, µ/⇤) = (0.1, 0.6, 0, 6). (b) Each
contribution from the Dirac sea (red line) or the Fermi sea (blue line) and their sum (purple line).

PBC, the sum is over n = 0, 1, ..., Nz � 1 (or equivalently
n = 0, 1, ..., Nz).

Finally, we also define the dimensionless Casimir coef-
ficient on the lattice,

C [3]Lat
Cas ⌘ L3

zE
Lat
Cas = a3N3

zE
Lat
Cas. (17)

The quantities on the lattice, ELat
Cas and C [3]Lat

Cas , depend
on the lattice spacing a, but its continuum limit (a ! 0)
should coincide with Eqs. (11) and (12) in the continuum
theory (if the lattice regularization is appropriate):

C [3]
Cas = lim

a!0
C [3]Lat

Cas . (18)

E. Dispersion relations

We remark on the dispersion relations (6) and (7) for
quark fields in the DCDW phase. In Fig. 2(a), we show
the four eigenmodes in the DCDW phase. Here, the pa-
rameters are fixed as (M/⇤, q/⇤, µ/⇤, ) = (0.1, 0.6, 0.6),
where each quantity is dimensionless by dividing by a di-
mensional parameter ⇤. In this figure, the two touching
points of !� and !̃� are regarded as Weyl points, and
in addition, !� intersects the Fermi level at the Fermi
points (FPs). Furthermore, !+ also intersects the Fermi
level. Now, since we set q = µ for simplicity, the mo-
menta of the Weyl points of !� and the intersection be-
tween the Fermi level and !+ coincide.

Figure 2(b) shows each contribution from the Dirac
or Fermi sea and their sum. The Dirac-sea and Fermi-
sea contributions correspond to the absolute value of the
first and second terms of the integrand in Eq. (10), re-
spectively. These dispersion relations become flat bands
at low momentum and bend twice in the middle of the
dispersion relation. Such non-di↵erentiable points in
the dispersion relation generally lead to an oscillating
Casimir e↵ect.

In the next section, we will show plots as shown in
Fig. 2(b) for intuitively understanding the mechanism of
the Casimir e↵ect.

III. RESULTS

In this section, we show the results for the Casimir co-
e�cients in the low-, intermediate-, and high-density re-
gions, with the PBC (see Appendix A for the discussion
with the MIT bag boundary condition). In the follow-
ing, with ⇤ = 860 MeV, we fix the values of the order
parameters, M and q, at three µ (low-, intermediate, and
high-density regions) as those obtained in Ref. [46], where
the authors applied the mean-field approach in the NJL
model with the proper-time regularization.3

A. Oscillating Casimir e↵ect (virtual parameters)

We will see in the following section that the oscillating
Casimir e↵ect is attributed to the flat band e↵ect in the
total dispersion relation caused by the presence of Weyl
points. Therefore, in this subsection, we show how the
flat band induces the oscillating Casimir e↵ect by using
a virtual parameter set that is not a solution to the gap
equation of the NJL model but gives a typical flat band.
As typical parameters, we consider (M/⇤, q/⇤) =

(0.1, 0.6), as shown in Fig. 2. Then, the Casimir coef-
ficient defined as Eq. (12) is shown in Fig. 3. The ob-
tained results show the oscillating Casimir e↵ect. The

3 Note that the values of order parameters, M and q, in the NJL
model depend on regularization schemes. The Casimir energy
is a quantity independent of regularization schemes. Therefore,
once M and q are obtained by a regularization, we can calculate
the Casimir energy equivalently by any regularization (using the
fixed M and q).

Fermi sea

Dirac sea

Fermi Point
Dirac Point

ω = 0
kz/Λ



/222024.08.27. ICNFP @ online 14

Zero baryon number density  (Low )ρB μ

μ=0 or Low μ:

Chiral symmetry broken phase

14

D. Fujii, K. Nakayama, and KS, preliminary

Massive Casimir effect
⇒damping faster than Lz^3

Thin Thick

No Fermi-
sea effect

No Dirac and Fermi point
M/Λ = 0.47, q/Λ = 0, μ/Λ = 0.46

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

Ca
sim
ir 
co
ef
.: C

[3
]

Ca
s

=
E C

as
×

L3 z

Thickness: aNz = Lz (fm)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

197

arXiv: 2402.17638



/222024.08.27. ICNFP @ online 15

Zero baryon number density  (Low )ρB μ
M/Λ = 0.47, q/Λ = 0, μ/Λ = 0.46

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

Ca
sim
ir 
co
ef
.: C

[3
]

Ca
s

=
E C

as
×

L3 z

Thickness: aNz = Lz (fm)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

197
Positive energy 
Damping faster then L3

z

Massive Dirac Casimir 
effect

Lz

arXiv: 2402.17638



/222024.08.27. ICNFP @ online 16

Finite baryon number density  (Intermediate )ρB μ

Intermediate μ:

Partially restored chiral symmetry 

15

D. Fujii, K. Nakayama, and KS, preliminary

Oscillation by Fermi-sea

Thin Thick

Massive 
Casimir effect
from Dirac sea

Fermi Point

Oscillation occur by Fermi point Oscillation period:  

Lz = π
kFP

∼ 2π
0.154 ∼ 9.4fm

Thickness: aNz = Lz (fm)

0.0 0.5 1.0 1.5 2.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

aNz=Lz (fm)

C
C
as
=
E C
as
*L
z^
d

Casimir coefficient(d=3):M=0.46,q=0,μ=0.485

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0.0 0.5 1.0 1.5 2.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

aNz=Lz (fm)

C
C
as
=
E C
as
*L
z^
d

Casimir coefficient(d=3):M=0.46,q=0,μ=0.485

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

M/Λ = 0.46, q/Λ = 0, μ/Λ = 0.485

Ca
sim
ir 
co
ef
.: C

[3
]

Ca
s

=
E C

as
×

L3 z

0.0 0.5 1.0 1.5 2.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

aNz=Lz (fm)

C
C
as
=
E C
as
*L
z^
d

Casimir coefficient(d=3):M=0.46,q=0,μ=0.485

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0.0 0.5 1.0 1.5 2.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

aNz=Lz (fm)

C
C
as
=
E C
as
*L
z^
d

Casimir coefficient(d=3):M=0.46,q=0,μ=0.485

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0 2 4 6 8 10
-2

0

2

4

6

aNz=Lz (fm)

C
C
as
=
E C
as
*L
z^
d

Casimir coefficient(d=3):M=0.47,q=0,μ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0.0 0.5 1.0 1.5 2.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

aNz=Lz (fm)

C
C
as
=
E C
as
*L
z^
d

Casimir coefficient(d=3):M=0.46,q=0,μ=0.485

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0.0 0.5 1.0 1.5 2.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

aNz=Lz (fm)

C
C
as
=
E C
as
*L
z^
d

Casimir coefficient(d=3):M=0.46,q=0,μ=0.485

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

197

arXiv: 2402.17638



/222024.08.27. ICNFP @ online 17

Thickness: aNz = Lz (fm)

0.0 0.5 1.0 1.5 2.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

aNz=Lz (fm)

C
C
as
=
E C
as
*L
z^
d

Casimir coefficient(d=3):M=0.46,q=0,μ=0.485

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0.0 0.5 1.0 1.5 2.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

aNz=Lz (fm)

C
C
as
=
E C
as
*L
z^
d

Casimir coefficient(d=3):M=0.46,q=0,μ=0.485

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

M/Λ = 0.46, q/Λ = 0, μ/Λ = 0.485
Ca
sim
ir 
co
ef
.: C

[3
]

Ca
s

=
E C

as
×

L3 z

0.0 0.5 1.0 1.5 2.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

aNz=Lz (fm)

C
C
as
=
E C
as
*L
z^
d

Casimir coefficient(d=3):M=0.46,q=0,μ=0.485

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0.0 0.5 1.0 1.5 2.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

aNz=Lz (fm)

C
C
as
=
E C
as
*L
z^
d

Casimir coefficient(d=3):M=0.46,q=0,μ=0.485

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0 2 4 6 8 10
-2

0

2

4

6

aNz=Lz (fm)

C
C
as
=
E C
as
*L
z^
d

Casimir coefficient(d=3):M=0.47,q=0,μ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0.0 0.5 1.0 1.5 2.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

aNz=Lz (fm)

C
C
as
=
E C
as
*L
z^
d

Casimir coefficient(d=3):M=0.46,q=0,μ=0.485

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0.0 0.5 1.0 1.5 2.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

aNz=Lz (fm)

C
C
as
=
E C
as
*L
z^
d

Casimir coefficient(d=3):M=0.46,q=0,μ=0.485

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

197

Finite baryon number density  (Intermediate )ρB μ

Lz

From Fermi sea

From Dirac sea
Total

Analytical 
solution

Period: 9.4 fm

arXiv: 2402.17638



/222024.08.27. ICNFP @ online 18

DCDW phase  (high )μ

High μ:

DCDW phase

16

D. Fujii, K. Nakayama, and KS, preliminary

Oscillation by Dirac sea

Oscillation by Fermi-sea

Total: Superposition

Thin Thick

Thickness: aNz = Lz (fm)

0 1 2 3 4

-5

0

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0 1 2 3 4

-5

0

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

M/Λ = 0.09, q/Λ = 0.62, μ/Λ = 0.72

0 1 2 3 4

-5

0

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0 1 2 3 4

-5

0

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

Ca
sim
ir 
co
ef
.: C

[3
]

Ca
s

=
E C

as
×

L3 z

0 1 2 3 4

-5

0

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0 1 2 3 4

-5

0

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0 1 2 3 4

-5

0

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

197

Fermi Point

Dirac Point

Oscillations by DCDW phase Oscillation period:  

 Lz = π
kWP

∼ 2π
0.297 ∼ 4.9fm

Lz = π
kFP

∼ 2π
1.03 ∼ 1.4fm

arXiv: 2402.17638



/222024.08.27. ICNFP @ online 19

Thickness: aNz = Lz (fm)

0 1 2 3 4

-5

0

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0 1 2 3 4

-5

0

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

M/Λ = 0.09, q/Λ = 0.62, μ/Λ = 0.72

0 1 2 3 4

-5

0

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0 1 2 3 4

-5

0

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

Ca
sim
ir 
co
ef
.: C

[3
]

Ca
s

=
E C

as
×

L3 z

0 1 2 3 4

-5

0

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0 1 2 3 4

-5

0

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

0 1 2 3 4

-5

0

5

aNz=Lz (fm)

C
as
im
ir
co
ef
fic
ie
nt
:C

C
as
=
E C
as
×
L z3

M/Λ=0.47,q/Λ=0,μ/Λ=0.46

a=0.4(Dirac)

a=0.2(Dirac)

a=0.4(Fermi)

a=0.2(Fermi)

a=0.4(Total)

a=0.2(Total)

197

Lz

From Fermi seaFrom Dirac sea

Total Analytical 
solution

DCDW phase  (high )μ

Period: 4.9fm

Period: 1.4fm

arXiv: 2402.17638



/222024.08.27. ICNFP @ online 20

DCDW phase  (high )μ
Oscillations by MDCDW phase
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MDCDW phase
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Summary and Outlook 
Casimir effect in dense QCD (NJL) 

Low  :              Massive Dirac Casimir effect 
Intermediate  : Oscillating Casimir effect from Fermi sea 
High  :             Oscillating Casimir effect by DCDW 
Under  :            Oscillating Casimir effect from each LL

μ

μ

μ
B

Color superconducting phase or kink crystal phase 
Lattice QCD simulations 
・・・・

Thank you for your attention
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FIG. 11. Casimir coe�cients in the low-density region with
the “MIT bag” boundary conditions. We denote a⇤ as a in
the legends.
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FIG. 11. Casimir coe�cients in the low-density region with
the “MIT bag” boundary conditions. We denote a⇤ as a in
the legends.
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and the Fermi momentum (at normal phase q ! M ! 0)
becomes q=kF ! 1:17–1:47 for the baryon-number den-
sities !b=!0 ! 3:62–5:30 where DCDW develops. The
baryon-number density is shown in Fig. 6 as a function
of " for the normal and the density-wave cases. The jumps
of the baryon-number density reflect the first-order transi-
tion. In the DCDW phase, the relation q=2>M is retained,
and the Fermi surface looks like Fig. 2(b).

Here we show the coupling-strength dependence of the
critical chemical potentials "c1;c2 in Fig. 7, including the
semiempirical value G!2 ! 6:35 (! ! 660:37 MeV) to
reproduce the pion decay constant f# ! 93 MeV and the
constituent-quark mass ’ 330 MeV, one-third of the nu-

cleon mass in the vacuum. The range of the DCDW phase
between "c1 and "c2 starts to open at G!2 ’ 4:72 and
broadens with an increase of the coupling strength. It
should be noted that the effective potential (14) can be
scaled by the cutoff !, and, thus, the dimensionless cou-
pling G!2 becomes only one parameter to determine
whether or not the phase transition itself occurs in the
present model.

It should be kept in mind that the order of the transitions
may depend on the parameter choice of G and ! and also
on the regularization scheme.

B. Magnetic properties

Using the eigenspinors in Eqs. (6)–(10), we can calcu-
late various expectation values with respect to the DCDW
state. For an operator O, which does not depend on the
spatial coordinate, its expectation value becomes a simple
form:

h y"r#O "r#i !
Z d3p

"2##3

$ h ~ y"p#ei$3%5q%r=2Oe&i$3%5q%r=2 ~ "p#i:
(19)

We can confirm that baryon-number density O ! 1 is
still constant even in the density-wave state: summation of
quasiparticle state in momentum space,

!B !
Z d3p

"2##3 h
~ y"p# ~ "p#i ! constant: (20)

On the other hand, the spin expectation value O !
%0%5%3=2 ' "z vanishes in each flavor,

h"zi '
1

2

Z d3p
"2##3 h

~ y"p#%0%5%3
~ "p#i ! 0; (21)

because the stationary condition for the wave number q is
proportional to the expectation value:

0 ! @#tot"q;M#
@q

/ h"zi: (22)

Here we show an interesting feature of DCDW: a spatial
modulation of the anomalous magnetic moment. The
Gordon decomposition of the gauge coupling term gives
the magnetic interaction with external field F"& in the form
gL"e(=2M#" $ '"& #F"&, where gL is a form factor and e(

an effective electric charge. The operator of the magnetic
moment for the z component is defined by O ! %0'12,
which is not commuted to %5,

ei$3%5q%r=2%0'12e&i$3%5q%r=2 ! %0'12 cos"q % r#
& i%3 sin"q % r#; (23)

and then its expectation value is given by
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FIG. 7 (color online). Critical chemical potentials "c1;c2 are
plotted as functions of the dimensionless coupling G!2 at T !
0. The DCDW phase appears between "c1 and "c2. The critical
coupling at "c1 ! "c2 is estimated to be G!2 ’ 4:72.
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FIG. 6 (color online). Baryon-number density as a function of
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