Casimir effect in magnetized dense QCD

arXiv: 2402.17638 arXiv: 2408.08384

先端基礎研究センター(原子力研究開発機構)

ASRC (JAEA) Daisuke Fujii

Collaborators:

K. Nakayama (RIKEN-CCS), K. Suzuki (ASRC, JAEA)

Oscillating Casimir effect

- Casimir effect from Dirac/Weyl electron fields in Semimetals
 Thin films of Dirac semimetal Cd₃As₂ and Na₃Bi
 - Oscillating attractive/zero/repulsive Casimir forces

Oscillating Casimir effect

Small volume physics in QCD

Oscillating Casimir effect

Consider counterparts of several Casimir effect in NJL model

What is a counterpart in QCD (NJL) ?

What is a counterpart in QCD ?

Dual Chiral Density Wave (DCDW)

- A candidate for ground state near chiral phase transition of density QCD (NJL)
- Order parameter with spatially inhomogeneous chiral condensate
- The spiral structure of scalar (σ) and pseudoscalar (π_0) condensates Prediction from NJL

$$\left\langle \bar{q}q \right\rangle \rightarrow M\cos(\vec{q} \cdot \vec{r})$$

$$\left\langle \bar{q}i\gamma_5 q \right\rangle \rightarrow M\sin(\vec{q} \cdot \vec{r})$$

$$0.20$$

$$0.15$$

$$0.15$$

$$0.10$$

$$0.05$$

$$0.00$$

$$0.40$$

$$0.45$$

$$\mu/\Lambda$$

$$0.50$$

Dispersion relations in DCDW

Four eigenvalues of Dirac field at q = (0,0,q)

DCDW under Magnetic flelds

Magnetic Dual Chiral Density Wave (MDCDW)

- The magnetic field makes the DCDW phase more robust because of the effective 1 dim space.
- MDCDW is realized in the interior of a **neutron star**

Dispersion relations in MDCDW

Results

Zero baryon number density ρ_B (Low μ)

14/22

2024.08.27. ICNFP @ online

arXiv: 2402.17638

DCDW phase (high μ)

DCDW phase (high μ)

MDCDW phase

Summary and Outlook

Casimir effect in dense QCD (NJL)
 ▶ Low µ : Massive Dirac Casimir effect
 ▶ Intermediate µ : Oscillating Casimir effect from Fermi sea
 ▶ High µ : Oscillating Casimir effect by DCDW
 ▶ Under B : Oscillating Casimir effect from each LL

Color superconducting phase or kink crystal phase

Lattice QCD simulations

Thank you for your attention

Buck up

Buck up

Buck up

E. Nakano and T. Tatsumi (2005)

