MULTIMESSENGER STUDIES WITH THE PIERRE AUGER OBSERVATORY

Jon Paul Lundquist jplundquist@gmail.com

www.ung.si/en/research/cac/

XIII International Conference on New Frontiers in Physics 26 Aug - 4 Sep 2024, OAC, Kolymbari, Crete, Greece

ABSTRACT SUMMARY

- Pierre Auger Observatory (Auger): world's largest ultra-high-energy cosmic ray (UHECR) detector.
- Crucial role in multi-messenger astroparticle physics: high sensitivity to UHE photons and neutrinos.
- Set stringent limits on diffuse/point-like fluxes: constraints on dark-matter models and UHECR sources.
- No temporal coincidences of neutrinos/photons with LIGO/Virgo gravitational waves: energy flux limits.
- Lack of correlations between UHECR and HE neutrinos from IceCube Neutrino Observatory, ANTARES, and Auger: additional flux constraints.
- No significant UHE neutron fluxes from galactic gamma-ray sources.

ABSTRACT SUMMARY

- Pierre Auger Observatory (Auger): world's largest ultra-high-energy cosmic ray (UHECR) detector.
- Crucial role in multi-messenger astroparticle physics: high sensitivity to UHE photons and neutrinos.
- Set stringent limits on diffuse/point-like fluxes: constraints on dark-matter models and UHECR sources.
- No temporal coincidences of neutrinos/photons with LIGO/Virgo gravitational waves: energy flux limits.
- Lack of correlations between UHECR and HE neutrinos from IceCube Neutrino Observatory, ANTARES, and Auger: additional flux constraints.

No significant UHE neutron fluxes from galactic gamma-ray sources.

See Tim Fehler's ICNFP2024 talk "Searches for ultra-high-energy photons with the Pierre luger Observatory: Current status and future perspectives

PIERRE AUGER OBSERVATORY

Highest energy multi-eye event

- UHECR Hybrid Fluorescence and Ground Array Detector.
- E > 10^17 eV
- Located near Malargüe, Argentina
- >500 Worldwide Members
- First Results: 2004

3000 km² 18.5×Ljubljana

Five Fluorescence Detectors (FD)

Ultra-High-Energy Cosmic Ray Extensive Air-Shower Particles

~1600 Surface Detectors (SD)

See Vitor de Souza's ICNFP2024 talk "Highlights from the Pierre Auger Observatory"

PIERRE AUGER OBSERVATORY: OPEN DATA

PIERRE AUGER OBSERVATORY

Highest energy multi-eye event

PIERRE AUGER OBSERVATORY NEUTRINO DETECTION

AUGER NEUTRINOS Pos (ICRC2023) 1488

- UHE CRs and their sources produce neutrinos (cosmogenic and astrophysical).
- Neutral particles point back towards sources.
- Auger is sensitive to UHE neutrinos: $E_{\nu} > \sim 10^{17}$ eV.

RYUUNOSUKE TAKESHIGE

SD NEUTRINO SEARCH PoS (ICRC2023) 1488

Hadronic showers start high in the atmosphere: EM is absorbed. Neutrinos: High-inclination showers with strong EM component.

Example SD Signals

PoS (ICRC2023) 1488

→ Inclined events with slow rising and broad signal

Hadronic showers start high in the atmosphere: EM is absorbed.

PoS (ICRC2023) 1488

Hadronic showers start high in the atmosphere: EM is absorbed.

→ Inclined events with slow rising and broad signal → Larger Area-over-Peak (AoP)

PoS (ICRC2023) 1488

- Hadronic showers start high in the atmosphere: EM is absorbed.
- Neutrinos: High-inclination showers with strong EM component.
- Large surface detector signal time spread.
 - Large average SD signal area over peak $\langle AoP \rangle$.
- Upward going Earth-skimming events.

PoS (ICRC2023) 1488

Competitive Upper-limits.

- $k \sim 3.5 \times 10^{-9} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} (10^{17} to 10^{19.7} \text{ eV})$
- Pure-proton composition and a strong source redshift evolutions are excluded

EPJ 283 (2023) 04003.004

Diffuse Neutrino Upper Limits

JCAP 11 (2019) 004

Declination Dependent "Point-Source" Upper Limits $\frac{dN(E_v)}{dE_v} = k \cdot E_v^{-2}$

PoS (ICRC2023) 1488

Competitive Upper-limits.

- $k \sim 3.5 \times 10^{-9} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} (10^{17} to 10^{19.7} \text{ eV})$
- Pure-proton composition and a strong source redshift evolutions are excluded Pos (ICRC2023) 1520

EPJ 283 (2023) 04003.004

Diffuse Neutrino Upper Limits

JCAP 11 (2019) 004

Declination Dependent "Point-Source" Upper Limits $\frac{dN(E_v)}{dE_v} = k \cdot E_v^{-2}$

AUGER NEUTRINOS AND GRAVITATIONAL WAVES

PoS (ICRC2023) 1488

 UHE neutrino luminosity of binary black hole mergers observed by the LIGO/Virgo Collaboration (LVC) via stacking analysis (2015-2020).

- Effective Detector Area dependence:
 - Zenith Angle θ ("channel")
 - Neutrino Energy *E*_v
 - Time
 - Short-term SD Behavior
 - Pointing-direction's Zenith Angle $\theta(t)$

PoS (ICRC2023) 1488

• UHE neutrino luminosity of binary black hole mergers observed by the LIGO/Virgo Collaboration (LVC) via stacking analysis (2015-2020).

Effective Detector Area dependence:

- Zenith Angle θ ("channel")
- Neutrino Energy E_{ν}
- Time
 - Short-term SD Behavior
 - Pointing-direction's Zenith Angle $\theta(t)$

JCAP 11, 004 (2019) 17

PoS (ICRC2023) 1488

 UHE neutrino luminosity of binary black hole mergers observed by the LIGO/Virgo Collaboration (LVC) via stacking analysis (2015-2020).

Effective Detector Area dependence:

- Zenith Angle θ ("channel")
- Neutrino Energy E_{ν}
- Time
 - Short-term SD Behavior
 - Pointing-direction's Zenith Angle $\theta(t)$

$$(\theta,t) = \int_0^{\infty} E_{\nu}^{-2} A_{eff}(E_{\nu},\theta(t),t) dE_{\nu}$$

~ 00

Assumed Neutrino Spectrum

PoS (ICRC2023) 1488

- UHE neutrino luminosity of binary black hole mergers observed by the LIGO/Virgo Collaboration (LVC) via stacking analysis (2015-2020).
- Isotropic E_{ν}^{-2} emission assumed.

$$L_{up,i} = \frac{N_{up,v}}{T_i} \left(\sum_{s} \sum_{p \in \Omega_{90}(s)} A_{p,s,i} P_{p,s} \int_0^\infty \frac{\Pi_{p,s}(r)}{r^2 (1+z(r))} dr \right)^{-1}$$

L_{up,i} 90% CL Upper-Limit Neutrino Luminosity *i*: Time Bin, s: BBH Mergers, *p*: Healpix pixel locations.

PoS (ICRC2023) 1488

- UHE neutrino luminosity of binary black hole mergers observed by the LIGO/Virgo Collaboration (LVC) via stacking analysis (2015-2020).
- Isotropic E_{ν}^{-2} emission assumed.

$$L_{up,i} = \frac{N_{up,\nu}}{T_i} \left(\sum_{s} \sum_{p \in \Omega_{90}(s)} A_{p,s,i} P_{p,s} \int_0^\infty \frac{\Pi_{p,s}(r)}{r^2 (1+z(r))} dr \right)^{-1}$$

 $L_{up,i}$ 90% CL Upper-Limit Neutrino Luminosity

i: Time Bin, s: BBH Mergers, *p*: Healpix pixel locations.

PoS (ICRC2023) 1488

- UHE neutrino luminosity of binary black hole mergers observed by the LIGO/Virgo Collaboration (LVC) via stacking analysis (2015-2020).
- Isotropic E_{ν}^{-2} emission assumed.

$$L_{up,i} = \frac{N_{up,\nu}}{T_i} \left(\sum_{s} \sum_{p \in \Omega_{90}(s)} A_{p,s,i} P_{p,s} \int_0^\infty \frac{\Pi_{p,s}(r)}{r^2 (1+z(r))} dr \right)^{-1}$$

 $L_{up,i}$ 90% CL Upper-Limit Neutrino Luminosity

i: Time Bin, s: BBH Mergers, *p*: Healpix pixel locations.

PoS (ICRC2023) 1488

- UHE neutrino luminosity of binary black hole mergers observed by the LIGO/Virgo Collaboration (LVC) via stacking analysis (2015-2020).
- Isotropic E_{ν}^{-2} emission assumed.

$$L_{up,i} = \frac{N_{up,v}}{T_i} \left(\sum_{s} \sum_{p \in \Omega_{90}(s)} A_{p,s,i} P_{p,s} \int_0^\infty \frac{\Pi_{p,s}(r)}{r^2 (1+z(r))} dr \right)^{-1}$$

 $L_{up,i}$ 90% CL Upper-Limit Neutrino Luminosity • *i*: Time Bin, s: BBH Mergers, *p*: Healpix pixel locations. • $N_{up,v} = 2.44$: Non-observation 90% CL.

PoS (ICRC2023) 1488

- UHE neutrino luminosity of binary black hole mergers observed by the LIGO/Virgo Collaboration (LVC) via stacking analysis (2015-2020).
- Isotropic E_{ν}^{-2} emission assumed.

$$L_{up,i} = \frac{N_{up,v}}{T_i} \left(\sum_{s} \sum_{p \in \Omega_{90}(s)} A_{p,s,i} P_{p,s} \int_0^\infty \frac{\Pi_{p,s}(r)}{r^2 (1+z(r))} dr \right)^{-1}$$

- *i*: Time Bin, s: BBH Mergers, *p*: Healpix pixel locations.
- $N_{up,v} = 2.44$: Non-observation 90% CL.
- $p \in \Omega_{90}(s)$: Pixels inside 90% CL Solid Angle of Source.

PoS (ICRC2023) 1488

- UHE neutrino luminosity of binary black hole mergers observed by the LIGO/Virgo Collaboration (LVC) via stacking analysis (2015-2020).
- Isotropic \overline{E}_{ν}^{-2} emission assumed.

$$L_{up,i} = \frac{N_{up,v}}{T_i} \left(\sum_{s} \sum_{p \in \Omega_{90}(s)} A_{p,s,i} P_{p,s} \int_0^\infty \frac{\Pi_{p,s}(r)}{r^2 (1+z(r))} dr \right)^{-1}$$

- *i*: Time Bin, s: BBH Mergers, *p*: Healpix pixel locations.
- $N_{up,v} = 2.44$: Non-observation 90% CL.
- $p \in \Omega_{90}(s)$: Pixels inside 90% CL Solid Angle of Source.
- $P_{p,s}$: Source Probability (PDF) at Pointing Direction.

PoS (ICRC2023) 1488

. <mark>(3D</mark> info

- UHE neutrino luminosity of binary black hole mergers observed by the LIGO/Virgo Collaboration (LVC) via stacking analysis (2015-2020).
- Isotropic E_{ν}^{-2} emission assumed.

$$L_{up,i} = \frac{N_{up,v}}{T_i} \left(\sum_{s} \sum_{p \in \Omega_{90}(s)} A_{p,s,i} P_{p,s} \int_0^\infty \frac{\Pi_{p,s}(r)}{r^2 (1+z(r))} dr \right)^{-1}$$

- *i*: Time Bin, s: BBH Mergers, *p*: Healpix pixel locations.
- $N_{up,v} = 2.44$: Non-observation 90% CL.
- $p \in \Omega_{90}(s)$: Pixels inside 90% CL Solid Angle of Source.
- $P_{p,s}$: Source Probability (PDF) at Pointing Direction.
- $\Pi_{p,s}(r)$: Luminosity Distance PDF.

PoS (ICRC2023) 1488

 $P_{p,s} * \Pi_{p,s}$ (3D info.)

- UHE neutrino luminosity of binary black hole mergers observed by the LIGO/Virgo Collaboration (LVC) via stacking analysis (2015-2020).
- Isotropic E_{ν}^{-2} emission assumed.

$$L_{up,i} = \frac{N_{up,\nu}}{T_i} \left(\sum_{s} \sum_{p \in \Omega_{90}(s)} A_{p,s,i} P_{p,s} \int_0^\infty \frac{\Pi_{p,s}(r)}{r^2 (1+z(r))} \, dr \right)^{-1}$$

- *i*: Time Bin, s: BBH Mergers, *p*: Healpix pixel locations.
- $N_{up,v} = 2.44$: Non-observation 90% CL.
- $p \in \Omega_{90}(s)$: Pixels inside 90% CL Solid Angle of Source.
- $P_{p,s}$: Source Probability (PDF) at Pointing Direction.
- $\Pi_{p,s}(r)$: Luminosity Distance PDF.

PoS (ICRC2023) 1488

UHE neutrino luminosity of BBH mergers observed by LVC via stacking analysis. Assuming constant luminosity Isotropic E_{ν}^{-2} spectrum during emission periods of 24 hours and 60 days after merger.

 $L_{up,1day} = 2.7 \times 10^{48} \text{ erg/s}$ $L_{up,60days} = 4.6 \times 10^{46} \text{ erg/s} \approx L_{up,1day}/60$

 $E_{up,1day} = 2.3 \times 10^{53}$ erg Stringent Upper Limits on $E_{up,60days} = 2.4 \times 10^{53} \text{ erg}$ **UHE Neutrinos**

PoS (ICRC2023) 1488

UHE neutrino luminosity of BBH mergers observed by LVC via stacking analysis.
 Assuming constant luminosity Isotropic E⁻²_ν spectrum during emission periods of 24 hours and 60 days after merger.

28

GW170817 (BINARY NEUTRON STAR MERGER

ApJ Lett. 850 (2017)

- GW170817: Seen by 70 observatories (7 continents and space) across the EM spectrum
- Follow-up of gravitational-wave (GW) event alerts through, e.g., GCN
- SD neutrino search with <15 minute latency: both Earth-skimming (ES) and down-going (DG) channels no neutrinos identified.
- Perfectly within the ES channel FoV at event time.
- Auger limits complement those of IceCube and ANTARES.

Typical off-axis GRB. Optimistic on-axis attenuated GRB constrained.

AUGER PHOTONS AND GRAVITATIONAL WAVES

UHE PHOTONS FROM GW SOURCES

ApJ 952 (2023) 91

- Binary black hole (BBH)/neutron star (BNS) or black hole-neutron star (BHNS) mergers. 10 events selected that maximize signal sensitivity and reduce background. BNS GW170817 (NGC4993) at 41 Mpc $\rightarrow E_{emit}^{UL} < 0.04 M_{\odot} (E_{\gamma} > 2 \times 10^{19})$
- and $E_{emit}^{UL} < 0.008 M_{\odot} (E_{\gamma} > 4 \times 10^{19})$

See Tim Fehler's ICNFP2024 talk earches for ultra-high-energy photons with the Pierre Auger Observatory

AUGER UHECR CORRELATION WITH NEUTRINOS

CORRELATIONS OF NEUTRINOS WITH UHECR

ApJ 934 164 (2022)

Telescope Array

Pierre Auger

IceCube

PIERRE AUGER

1043 Authors

Location: Utah Desert Surface Detector (SD) Array (507 scintillator detectors) **4 Fluorescence Detectors Exposure:** Northern Hemisphere

╈

> 16° Dec.

- **Location: Argentina Desert**
- SD Array (1660 water-**Cherenkov detectors)**
- **5 Fluorescence Detectors**
- < 45° Dec.

- **Location: South Pole**
- 86 Strings in Ice
- Each With 60 Digital **Optical Modules**

ANTARES

- **12 Strings Anchored to**
- Sea Floor
- **885 Optical Modules**

From A. Barbano: PoS(ICRC2019)842

PIERRE AUGER

CORRELATIONS OF NEUTRINOS WITH UHECR

ApJ 934 164 (2022)

Telescope Array

Pierre Auger

- Location: Argentina Desert
- SD Array (1660 water-Cherenkov detectors)
- 5 Fluorescence Detectors
- Exposure: Southern Hemisphere
 < 45° Dec.

IceCube

- Location: South Pole
- 86 Strings in Ice
- Each With 60 Digital
 Optical Modules

ANTARES

- Location: Mediterranean
- 12 Strings Anchored to
- Sea Floor
- 885 Optical Modules

34

From A. Barbano: PoS(ICRC2019)842

- Location: Utah Desert
 Surface Detector (SD) Array (507 scintillator detectors)
 4 Fluorescence Detectors
 Exposure: Northern Hemisphere
 - > 16° Dec.

1043 Authors

See Sonja Mayotte's ICNFP2024 talk "The Pierre Auger Observatory as a Test Environment"

CORRELATIONS OF NEUTRINOS WITH UHECR

ApJ 934 164 (2022)

Three Analyses:

- 1. Arrival direction cross-correlation between high-energy astrophysical neutrinos and UHECRS.
- Two Stacked Likelihood Searches:
 - 2. UHECR excesses around HE neutrinos ("Neutrino Stacking").
 - Neutrino excesses around highest energy UHECR ("UHECR Stacking").

CORRELATIONS OF NEUTRINOS WITH UHECR

ApJ 934 164 (2022)

PIERRE AUGER

- **Three Analyses:**
 - 1. Arrival direction cross-correlation between high-energy astrophysical neutrinos and UHECRS.
 - Two Stacked Likelihood Searches:
 - 2. UHECR excesses around HE neutrinos ("Neutrino Stacking").
 - 3. Neutrino excesses around highest energy UHECR ("UHECR Stacking").

High-energy astrophysical neutrinos and UHECRS for 1.,2.

High Statistics IceCube 7-yr Point-Source Example for 3.
ARRIVAL DIRECTION CROSS-CORRELATION

ApJ 934 164 (2022)

 $1^\circ < \delta < 30^\circ$, 1° steps

- n_{obs} = UHECR-neutrino pairs inside angular distance δ n_{exp} = Expected pairs under null-hypotheses:
 - Isotropic UHECR
 - Isotropic Neutrinos

ARRIVAL DIRECTION CROSS-CORRELATION

ApJ 934 164 (2022)

ARRIVAL DIRECTION CROSS-CORRELATION

ApJ 934 164 (2022)

ApJ 934 164 (2022)

• Hypotheses:

- Signal: Astrophysical neutrino as source location with correlated UHECR.
- Background: Isotropic UHECR.

$$\ln \mathcal{L}(n_s) = \sum_{i=1}^{N_{Auger}} \ln \left(\frac{n_s}{N_{CR}} S^i_{Auger} + \frac{N_{CR} - n_s}{N_{CR}} B^i_{Auger} \right) + \sum_{i=1}^{N_{TA}} \ln \left(\frac{n_s}{N_{CR}} S^i_{TA} + \frac{N_{CR} - n_s}{N_{CR}} B^i_{TA} \right)$$

ApJ 934 164 (2022)

- Hypotheses:
 - Signal: Astrophysical neutrino as source location with correlated UHECR.
 - Background: Isotropic UHECR.

$$\Delta \mathcal{L}(n_s) = \sum_{i=1}^{N_{Auger}} \ln\left(\frac{n_s}{N_{CR}}S^i_{Auger} + \frac{N_{CR} - n_s}{N_{CR}}B^i_{Auger}\right) + \sum_{i=1}^{N_{TA}} \ln\left(\frac{n_s}{N_{CR}}S^i_{TA} + \frac{N_{CR} - n_s}{N_{CR}}B^i_{TA}\right)$$

- n_s : # signal UHECR (free param.) • $N_{CR} = N_{TA} + N_{Auger}$
- S_{det}^i : UHECR event *i* signal prob.
- B_{det}^i : Event *i* background prob.

ApJ 934 164 (2022)

- Hypotheses:
 - Signal: Astrophysical neutrino as source location with correlated UHECR.
 - Background: Isotropic UHECR.

$$n \mathcal{L}(n_{s}) = \sum_{i=1}^{N_{Auger}} \ln\left(\frac{n_{s}}{N_{CR}}S_{Auger}^{i} + \frac{N_{CR} - n_{s}}{N_{CR}}B_{Auger}^{i}\right) + \sum_{i=1}^{N_{TA}} \ln\left(\frac{n_{s}}{N_{CR}}S_{TA}^{i} + \frac{N_{CR} - n_{s}}{N_{CR}}B_{TA}^{i}\right)$$

$$\bullet \quad n_{s}: \text{\# signal UHECR (free param.)}$$

$$\bullet \quad N_{CR} = N_{TA} + N_{Auger}$$

$$\bullet \quad S_{det}^{i}: \text{UHECR event } i \text{ signal prob.}$$

 B_{det}^i : Event *i* background prob.

ApJ 934 164 (2022)

- Hypotheses:
 - Signal: Astrophysical neutrino as source location with correlated UHECR.
 - Background: Isotropic UHECR.

UHECR

ApJ 934 164 (2022)

- Hypotheses:
 - Signal: Astrophysical neutrino as source location with correlated UHECR.
 - Background: Isotropic UHECR.

Signal and Background Proportions

$$\mathbf{h}\mathcal{L}(\boldsymbol{n}_{s}) = \sum_{i=1}^{N_{Auger}} \ln\left(\frac{\boldsymbol{n}_{s}}{N_{CR}}\boldsymbol{S}_{Auger}^{i} + \frac{N_{CR} - \boldsymbol{n}_{s}}{N_{CR}}\boldsymbol{B}_{Auger}^{i}\right) + \sum_{i=1}^{N_{TA}} \ln\left(\frac{\boldsymbol{n}_{s}}{N_{CR}}\boldsymbol{S}_{TA}^{i} + \frac{N_{CR} - \boldsymbol{n}_{s}}{N_{CR}}\boldsymbol{B}_{TA}^{i}\right)$$

n_s: # signal UHECR (free param.)
 N_{CR} = N_{TA} + N_{Auger}
 Sⁱ_{det}: UHECR event *i* signal prob.

 B_{det}^i : Event *i* background prob.

Neutrino j

UHECR *i*

ApJ 934 164 (2022)

- Hypotheses:
 - Signal: Astrophysical neutrino as source location with correlated UHECR.
 - Background: Isotropic UHECR.

ApJ 934 164 (2022)

- **Hypotheses:**
 - Signal: Astrophysical neutrino as source location with correlated **UHECR.**
 - **Background: Isotropic UHECR.**

ApJ 934 164 (2022)

- Hypotheses:
 - Signal: Astrophysical neutrino as source location with correlated UHECR.
 - Background: Isotropic UHECR.

Si

Stacked likelihood map of neutrino shower-like events and UHECR arrival directions

ApJ 934 164 (2022)

- Hypotheses:
 - Signal: Astrophysical neutrino as source location with correlated UHECR.
 - Background: Isotropic UHECR.

	p-values			
e-trial	tracks	>0.5	> 0.5	> 0.5
	cascades	> 0.5	0.38	0.26

3 magnetic deflections $\sigma_{MD} = D * \frac{100 \ EeV}{F}$ tested

Results consistent with isotropic UHECR

Uncertainties in Compositions and Magnetic Fields

Si

Stacked likelihood map of neutrino shower-like events and UHECR arrival directions

ApJ 934 164 (2022)

- Hypotheses:
 - Signal: Highest energy UHECR as source locations with correlated v.
 - Background: *Isotropic* v.

$$\ln \mathcal{L}(n_s, \gamma_s) = \sum_{j=1}^{N_{CR}} \left[\left(\sum_{i=1}^{N_{\nu}} \ln \left(\frac{n_s}{N_{\nu}} S_{\nu}^i(\gamma_s, \overline{\Omega}_s) + \frac{N_{\nu} - n_s}{N_{\nu}} B_{\nu}^i(\overline{\Omega}_s) \right) \right) - \frac{\left(\overline{\Omega}_s - \overline{\Omega}_j \right)^2}{\sigma_j(E_j)^2} \right]$$

- *n_s*: # signal events (free param.)
 - γ_s : ν source spectrum index (free param.)
- S_{ν}^{i} : ν event *i* signal prob.
- B^i_{ν} : Event *i* background prob.
- $\overrightarrow{\Omega}_s$: Pointing-direction of grid point.

ApJ 934 164 (2022)

- Hypotheses:
 - Signal: Highest energy UHECR as source locations with correlated ν .
 - **Background:** Isotropic *ν*.

- n_s: # signal events (free param.)
 - $\gamma \gamma_s$: ν source spectrum index (free param.)
- S_{ν}^{i} : ν event *i* signal prob.
- B_{ν}^{i} : Event *i* background prob.
- $\overline{\Omega}_s$: Pointing-direction of grid point.

$$TS(\overrightarrow{\Omega_s}) = 2 \ln \left(\frac{\mathcal{L}_1(\widehat{n}_s, \widehat{\gamma}_s)}{\mathcal{L}_1(n_s = 0)} \right)$$

<u>ApJ 934 164 (2022)</u>

- Hypotheses:
 - Signal: Highest energy UHECR as source locations with correlated ν .
 - **Background:** Isotropic *ν*.

 S_{ii}

- *n_s*: # signal events (free param.)
 - γ_s : ν source spectrum index (free param.)
- S_{ν}^{i} : ν event *i* signal prob.
- B^i_{ν} : Event *i* background prob.
- $\overline{\Omega}_s$: Pointing-direction of grid point.

∝ ln(Gaussian) ¶ j UHECR j

leutrino

<u>ApJ 934 164 (2022)</u>

Step Three

- Hypotheses:
 - Signal: Highest energy UHECR as source locations with correlated ν.
 - **Background:** Isotropic *ν*.

- *n_s*: # signal events (free param.)
 - γ_s : ν source spectrum index (free param.)
- S_{ν}^{i} : ν event *i* signal prob.
- B_{ν}^{i} : Event *i* background prob.
- $\overrightarrow{\Omega}_s$: Pointing-direction of grid point.

Grid point $\overrightarrow{\Omega}_s$ appears as hottest ν source corresponding to CR j

 S_{ii}

ApJ 934 164 (2022)

Step Four

Hypotheses:

75°

-75°

Neutrino Sky TS

60°

- Signal: Highest energy UHECR as source locations with correlated ν .
- **Background:** Isotropic ν .

Analysis demo

Sii

- n_s : # signal events (free param.)
 - γ_s : ν source spectrum index (free param.)
- S_{ν}^{i} : ν event *i* signal prob.
- B_{ν}^{i} : Event *i* background prob.
- $\overrightarrow{\Omega}_s$: Pointing-direction of grid point.

3 $TS(\vec{x_s}) + 2 \cdot \log(CRPrior)$ $TS(\vec{x_s})$ 2 · log(CRPrior)

 $(3^{\circ}, 6^{\circ})$

ApJ 934 164 (2022)

Different magnetic deflections and UHECR energy cutoffs

Analysis parameters						
$D_0 \cdot C$	3°	3°	3°	6°	6°	6°
$E_{ m cut}$	$70\mathrm{EeV}$	$85{\rm EeV}$	$100{\rm EeV}$	$70\mathrm{EeV}$	$85{\rm EeV}$	$100 \mathrm{Ee}^{3}$
Pre-trial p-value	0.33	0.23	> 0.5	0.19	0.097	0.43

Hypotheses:

- Signal: Highest energy UHECR as source locations with correlated v.
- Background: Isotropic ν.

Results consistent with isotropic neutrinos

Uncertainties in Compositions and
 Magnetic Fields

~0.2 post-trial

AUGER NEUTRONS CORRELATION WITH GALACTIC GAMMA-RAYS

NEUTRONS AND GALACTIC GAMMA-RAYS

PoS (ICRC2023) 246

- Neutrons generated by UHECR i.e. photodisintegration and pion-production.
- Neutral particles point directly to sources -- no magnetic deflection.
- Mean lifetime of 15 minutes $\rightarrow \langle Distance \rangle = 9.2 \ kpc \times \frac{E_N}{FeV}$ (galactic scale)
- Extensive air showers: protons and neutrons are indistinguishable.
- Neutron fluxes may be found by excess of UHECR around possible source.

UROPEAN SPACE AGENC

GAMMA TARGET CR PROBABILITY DENSITY

PoS (ICRC2023) 246

GAMMA TARGET CR PROBABILITY DENSITY

PoS (ICRC2023) 246

• CR event *i* weight equal to probability of originating at source *j*

 $w_{ij} = \frac{1}{2\pi\sigma_i^2} e^{-\frac{\xi_{ij}^2}{2\sigma_i^2}}$ 2d Gaussian

- ξ_{ij} Angular distance between event *i* and source *j*
- σ_i Pointing direction angular uncertainty
 - Function of zenith angle θ and m triggered SD

GAMMA TARGET CR PROBABILITY DENSITY

PoS (ICRC2023) 246

• CR event *i* weight equal to probability of originating at source *j*

 $w_{ij} = rac{1}{2\pi\sigma_i^2}e^{-rac{\xi_{ij}^2}{2\sigma_i^2}}$ 2d Gaussian

- ξ_{ij} Angular distance between event i and source j
- σ_i Pointing direction angular uncertainty
 - Function of zenith angle θ and m triggered SD

750 meter array 0.1 EeV < *E_{CR}* < 1 EeV

NEUTRON FLUX IDENTIFICATION

PoS (ICRC2023) 246

- All events considered possible source neutrons.
- Target *j* CR density:

$$\rho_j^{obs} = \sum_{i=1}^N w_i$$

NEUTRON FLUX IDENTIFICATION

PoS (ICRC2023) 246

- All events considered possible source neutrons.
- Target *j* CR density:

$$\rho_j^{obs} = \sum_{i=1}^N w_i$$

Isotropic Monte Carlo simulations via shower observable scrambling:

- Same N events as data.
- Data sample trigger time t_i .
- Sample zenith θ_i and associated σ_i .
- Uniform azimuthal angle sampling (0 to 2π).

p-val of ρ_j^{obs} via simulated event sets:

$$p_{j} = \frac{1}{N_{MC}} \sum_{k=1}^{N_{MC}} I(\rho_{kj}^{iso} > \rho_{j}^{obs}) \qquad N_{MC} = 10,000$$

POSSIBLE SOURCES

PoS (ICRC2023) 246

- **12 Sources Classes Considered:**
 - Same catalogs as <u>1406.4038 (arxiv.org)</u>

POSSIBLE SOURCES

PoS (ICRC2023) 246

- 12 Sources Classes Considered:
 - Same catalogs as <u>1406.4038 (arxiv.org)</u>

High Energy Set (Dec. < 45°, $E_{CR} > 1$ EeV)

- **1.** Millisecond Pulsars (msec PSRs): N_{scrs} = **283**
- 2. γ-ray Pulsars: 26
- **3.** Low Mass X-ray Binaries (LMXB): **102**
- 4. High Mass X-ray Binaries (HMXB): 60
- 5. γ TeV emitters Pulsar Wind Nebulae (H.E.S.S. PWN): 28
- 6. γ TeV emitters Other (H.E.S.S. other): 45
- 7. γ TeV emitters Unidentified (H.E.S.S. UNID): 56
- 8. Microquasars: 15
- 9. Magnetars: 27
- LHAASO PeVatrons (LHAASO): 9
- L1. Crab Nebula: 1
- 2. Galactic Center: 1

Low Energy Set (0.1 Eev $< E_{CR} < 1$ EeV) D < 1 kpc, Dec. $< 20^\circ$,

- 6. H.E.S.S. other: 11
- 9. Magnetars: 4

MOST SIGNIFICANT SOURCES

PoS (ICRC2023) 246

Sources Considered

- **12** source class sets: 888 sources, Dec. up to 45° (E_{CR} > 1 EeV).
- 166: D < 1 kpc and Dec. up to 20° (0.1 Eev < E_{CR} < 1 EeV).

	Most significant target from each target set $\geq 1 \text{ EeV}$							
Class		R.A. [deg]	Dec. [deg]	р	p*			
msec PSR	S	286.2	2.1	0.0075	0.88			
γ-ray PSR	ts 🛛	296.6	-54.1	$5.0 imes 10^{-5}$	0.013			
LMXB		237.00	-62.6	0.0069	0.51			
HMXB		308.1	41.0	0.014	0.57			
H.E.S.S. I	PWN	128.8	-45.6	0.0070	0.18			
H.E.S.S. o	other	128.8	-45.2	0.022	0.63			
H.E.S.S. U	UNID	305.0	40.8	0.0066	0.31			
Microqua	sars	308.1	41.0	0.014	0.19			
Magnetar	s	249.0	-47.6	0.15	0.99			
LHAASO		292.3	17.8	0.024	0.20			
Crab		83.6	22.0	0.71				
Gal. Cent	er	266.4	-29.0	0.86				

Most Significant Source p-val $p^* = 1 - (1 - p)^N$

(Šidák correction)

MOST SIGNIFICANT SOURCES

PoS (ICRC2023) 246

- Sources Considered
 - **12** source class sets: 888 sources, Dec. up to 45° (*E*_{CR} > 1 EeV).
 - 166: D < 1 kpc and Dec. up to 20° (0.1 Eev < E_{CR} < 1 EeV).

Most significant target from each target set $\geq 1 \text{ EeV}$						
Class	R.A. [deg]	Dec. [deg]	р	p*		
msec PSRs	286.2	2.1	0.0075	0.88		
γ-ray PSRs	296.6	-54.1	$5.0 imes 10^{-5}$	0.013		
LMXB	237.00	-62.6	0.0069	0.51		
НМХВ	308.1	41.0	0.014	0.57		
H.E.S.S. PWN	128.8	-45.6	0.0070	0.18		
H.E.S.S. other	128.8	-45.2	0.022	0.63		
H.E.S.S. UNID	305.0	40.8	0.0066	0.31		
Microquasars	308.1	41.0	0.014	0.19		
Magnetars	249.0	-47.6	0.15	0.99		
LHAASO	292.3	17.8	0.024	0.20		
Crab	83.6	22.0	0.71	1.5.5		
Gal. Center	266.4	-29.0	0.86	5750		

Same most significant H.E.S.S. PWN as 2014 result (p*-val = 0.56, <u>1406.4038</u>)

Most Significant Source p-val $p^* = 1 - (1 - p)^N$

(Šidák correction)

MOST SIGNIFICANT SOURCES

PoS (ICRC2023) 246

Sources Considered

- **12** source class sets: 888 sources, Dec. up to 45° (E_{CR} > 1 EeV).
- 166: D < 1 kpc and Dec. up to 20° (0.1 Eev < E_{CR} < 1 EeV).

	Most significant target from each target set $\geq 1 \text{ EeV}$						
Class	R.A. [deg]	Dec. [deg]	р	p*			
msec PSRs	286.2	2.1	0.0075	0.88			
γ-ray PSRs	296.6	-54.1	$5.0 imes 10^{-5}$	0.013			
LMXB	237.00	-62.6	0.0069	0.51			
HMXB	308.1	41.0	0.014	0.57			
H.E.S.S. PWN	128.8	-45.6	0.0070	0.18			
H.E.S.S. other	128.8	-45.2	0.022	0.63			
H.E.S.S. UNID	305.0	40.8	0.0066	0.31			
Microquasars	308.1	41.0	0.014	0.19			
Magnetars	249.0	-47.6	0.15	0.99			
LHAASO	292.3	17.8	0.024	0.20			
Crab	83.6	22.0	0.71	1.12			
Gal. Center	266.4	-29.0	0.86				

Most significant target from each target set \geq 0.1 EeV							
Class	R.A. [deg]	Dec. [deg]	р	p *			
msec PSRs	140.5	-52.0	0.043	0.66			
γ-ray PSRs	288.4	10.3	0.0056	0.47			
HMXB	116.9	-53.3	0.0092	0.071			
H.E.S.S. PWN	277.9	-9.9	0.12	0.48			
H.E.S.S. other	288.2	10.2	0.0033	0.036			
Magnetars	274.7	-16.0	0.13	0.44			

Most Significant Source p-val $p^* = 1 - (1 - p)^N$

(Šidák correction)

66

NEUTRON SOURCE UPPER LIMITS

PoS (ICRC2023) 246

Upper limit neutron number n_j^{UL} for a target source j is max(n) with fractions: $f_n < (1 - CL_{95\%})f_0$

• $f_0 = \frac{1}{N_{MC}} \sum_{k=1}^{N_{MC}} I(\rho_{kj}^{iso} < \rho_j^{obs})$ (MC < density than obs.) • $f_n = \frac{1}{N_{MC}} \sum_{k=1}^{N_{MC}} I(\rho_{kj}^{iso+n} < \rho_j^{obs})$ (MC + n events < density than obs.)

NEUTRON SOURCE UPPER LIMITS

PoS (ICRC2023) 246

Upper limit neutron number n_j^{UL} for a target source j is max(n) with fractions: $f_n < (1 - CL_{95\%})f_0$

•
$$f_0 = \frac{1}{N_{MC}} \sum_{k=1}^{N_{MC}} I(\rho_{kj}^{iso} < \rho_j^{obs})$$
 (MC < density than obs.)
• $f_n = \frac{1}{N_{MC}} \sum_{k=1}^{N_{MC}} I(\rho_{kj}^{iso+n} < \rho_j^{obs})$ (MC + n events < density than obs.)

Directional Exposure

$$\omega_j^{dir} = \frac{\langle \rho_{kj}^{iso} \rangle}{I_{CR}} = \frac{\rho_j^{exp}}{I_{CR}}$$

I_{CR}: Intensity (integrated flux)

NEUTRON SOURCE UPPER LIMITS

PoS (ICRC2023) 246

Upper limit neutron number n_j^{UL} for a target source j is max(n) with fractions: $f_n < (1 - CL_{95\%})f_0$

• $f_0 = \frac{1}{N_{MC}} \sum_{k=1}^{N_{MC}} I(\rho_{kj}^{iso} < \rho_j^{obs})$ (MC < density than obs.) • $f_n = \frac{1}{N_{MC}} \sum_{k=1}^{N_{MC}} I(\rho_{kj}^{iso+n} < \rho_j^{obs})$ (MC + n events < density than obs.)

Most significant target from each target set \geq 1 EeV					
Class	R.A. [deg]	Dec. [deg]	Flux U.L.	E-Flux U.L	
			$[{\rm km^{-2}\ yr^{-1}}]$	[eV cm ⁻² s ⁻¹	
msec PSRs	286.2	2.1	0.026	0.1	
γ-ray PSRs	296.6	-54.1	0.023	0.1	
LMXB	237.0	-62.6	0.017	0.1	
НМХВ	308.1	41.0	0.13	0.9	
H.E.S.S. PWN	128.8	-45.6	0.016	0.1	
H.E.S.S. other	128.8	Dow -45.2	n from 0.018 0.014	0.1	
H.E.S.S. UNID	305.0	40.8	0.15	Ĩ.	
Microquasars	308.1	41.0	0.13	0.9	
Magnetars	249.0	-47.6	0.011	0.07	
LHAASO	292.3	17.8	0.038	0.2	
Crab	83.6	22.0	0.020	0.1	
Gal Center	266.4	-29.0	0.0053	0.03	

	Most significant target from each target set $\ge 0.1 \text{ EeV}$					
Class	R.A. [deg]	R.A. [deg] Dec. [deg] Flux U.L.				
			$[{\rm km}^{-2}~{\rm yr}^{-1}]$	[eV cm ⁻² s ⁻¹]		
msec PSRs	140.5	-52.0	1.7	12.5		
γ-ray PSRs	288.4	10.3	5.3	38.9		
HMXB	116.9	-53.3	2.1	15.1		
H.E.S.S. PWN	277.9	-9.9	1.8			
H.E.S.S. other	288.2	10.2	5.5	40.2		
Magnetars	274.7	-16.0	1.6	11.8		

Assuming an E^{-2} spectrum

Directi	onal Exp	osure
, dir _	$\langle \rho_{kj}^{iso} \rangle$	ρ_j^{exp}
w_j –	I _{CR}	$\overline{I_{CR}}$

I_{CR}: Intensity (integrated flux)

SOURCE CLASS SIGNIFICANCE

PoS (ICRC2023) 246

Source class combined p-value: prob. of multiplied N uniformly distributed numbers 0 < n < 1

$$p(\Pi < \Pi_0) = \Pi_0 \sum_{k=0}^{N-1} \frac{(-\ln \Pi_0)^k}{k!} = 1 - Poisson(N, \ln \Pi_0)$$

lultiply source p-values

Π

SOURCE CLASS SIGNIFICANCE

PoS (ICRC2023) 246

Source class combined p-value: prob. of multiplied N uniformly distributed numbers 0 < n < 1

$$p(\Pi < \Pi_0) = \Pi_0 \sum_{k=0}^{N-1} \frac{(-\ln \Pi_0)^k}{k!} = 1 - Poisson(N, \ln \Pi_0)$$

Multiply source p-values

 p_i

Π

Combined <i>P</i> -value ≥ 1 EeV					
Class	No.	P-value	P-value (weighted)		
msec PSRs	283	0.90	0.50		
γ-ray PSRs	261	0.16	0.020		
LMXB	102	0.62	~2.6σ 0.25		
HMXB	60	0.49	0.34		
H.E.S.S. PWN	28	0.24	0.0052		
H.E.S.S. other	45	0.52	0.22		
H.E.S.S. UNID	56	0.61	0.75		
Microquasars	15	0.39	0.81		
Magnetars	27	0.99	0.98		
LHAASO	9	0.22	0.42		
Crab	1	0.71			
Gal. Center	1	0.86			

Combined <i>P</i> -value \geq 0.1 EeV					
Class	No.	P-value	P-value (weighted)		
msec PSRs	25	0.82	0.58		
γ-ray PSRs	113	0.53	0.93		
HMXB	8	0.33	0.23		
H.E.S.S. PWN	5	0.43	0.83		
H.E.S.S. other	11	0.074	0.58		
Magnetars	4	0.31	0.14		

750 m array data set

Source weighted p-vals by EM-flux, exposure, and neutron decay attenuation factor

1,500 m array data set

NEUTRON SUMMARY

- No significant evidence of neutron fluxes from candidate sources.
- Energy flux upper limits below TeV gamma-ray energy fluxes.
 - Neutron energy flux should exceed gamma-ray flux (more efficient production with E^-2 Fermi Acceleration).
- *E_{CR}* > 1 EeV all extragalactic? Transient sources? Misaligned sources?
NEUTRON SUMMARY

- No significant evidence of neutron fluxes from candidate sources.
- Energy flux upper limits below TeV gamma-ray energy fluxes.
 - Neutron energy flux should exceed gamma-ray flux (more efficient production with E^-2 Fermi Acceleration).
- *E_{CR}* > 1 EeV all extragalactic? Transient sources? Misaligned sources?

See also Federico Maria Mariani's ICNFP2024 talk "Anisotropy searches of cosmic rays at the highest energy with the Pierre Auger Observatory"

SUMMARY

Lack of detections does not mean great science cannot be done! E.g.

- Limits on stellar object mergers proportion of energy in neutrinos/photons.
- Some dark matter models excluded from decay into large flux of neutrinos/photons.
- Further evidence of extragalactic UHECR.
- Exclusions of UHECR compositions and source redshift evolution models.

See David Schmidt's ICNFP2024 talk "AugerPrime: Expectations and first results"

 Future possible first detections and significant improvements in point source upper limits for neutrinos/photons/neutrons.