

University of Southern Denmark

Towards Photon Counting at the ALPS II Experiment: Efficient Background Discrimination for TES-Based Single-Photon Detectors

E. Rivasto¹, J. A. Rubiera Gimeno², K.-S. Isleif⁴, F. Januschek², A. Lindner², M. Meyer¹, G. Othman³, C. Schwemmbauer²

¹CP3-Origins, University of Southern Denmark, Odense, Denmark
 ²Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
 ³Institut f
ür Experimentalphysik, Universit
ät Hamburg, Hamburg, Germany
 ⁴Helmut-Schmidt-University, Hamburg, Germany

- Any Light Particle Search II
- Laboratory experiment looking for:
 - Weakly Interacting Sub-eV Particles (WISPs)
 - Axions
 - Axion-like particles (ALPs)
- Model independent!

SDU

- Located at DESY, Hamburg, Germany (old HERA)
- Started data taking on May 2023 still improving sensitivity

Motivation: **Axions**

- Solution for the strong CP-problem
 - Peccei & Quinn (1977)

$$\mathcal{L}_{ ext{QCD}} \supset \mathcal{L}_{ ext{CP-viol.}} = rac{lpha_{ ext{s}}}{4\pi} \cdot heta \cdot ext{Tr}(G_{\mu
u} ilde{G}_{\mu
u})$$

- Treat θ as dynamical field \rightarrow Spontaneous relaxation to zero
- Proposed U(1)_{PO} symmetry gives rise to the axion
- Weak coupling (g_{ayy}) to photons—Candidate for **dark matter**!
- TeV transparency of the universe
- Stellar cooling
 - Limits coupling to $g_{a\gamma\gamma} \sim 10^{-12} \text{ GeV}^{-1}$

ALPS II – A Light Shining Through a Wall Experiment

Transition Edge Sensors (TES)

Transition Edge Sensors (TES)

- TESs provided by NIST
 - Based on tungsten ($T_c \approx 140 \text{ mK}$)
 - Optimized for 1064 nm photons
- Packaging and SQUIDs provided by PTB
- Operated within Bluefors SD dilution refrigerator

SDU

TES structure:

Transition Edge Sensors (TES)

PS

christina.schwemmbauer@desy.de

- Energy resolution of **5%** (σ) @ 1.165 eV (1064 nm photon)
 - 1.165 eV, σ=0.06 eV
 - 1064 nm, σ= 64 nm
- Detection efficiency >80% (further measurement ongoing)

José Alejandro Rubiera Gimeno,^{a,*} Friederike Januschek,^a Katharina-Sophie Isleif,^{a,**} Axel Lindner,^a Manuel Meyer,^b Gulden Othman,^c Christina Schwemmbauer^a and Rikhav Shah^{d,***}

^aDeutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany ^bCP3-Origins, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark ^c Institut für Experimentalphysik, Universität Hamburg (UHH), Notkestr. 85, 22607 Hamburg, Germany ^d Institute for Physics, Johannes-Gutenberg-Universität (JGU), Staudingerweg 7, 55128 Mainz, Germany ^{**}now at Helmut-Schmidt-Universität (HSU) ^{***}now at Universität Hamburg (UHH) *E*-mail: jose.rubiera.gimeno@desy.de, friederike.januschek@desy.de, katharina-sophie.isleif@desy.de, axel.lindner@desy.de, manuel.meyer@desy.de, gulden.othman@desy.de, rikhav.shah@desy.de,

[1] Gimeno, J. A. R., Januschek, F., Isleif, K. S., Lindner, A., Meyer, M., Othman, G., Schwemmbauer, C., & Shah, R. (2024). A TES system for ALPS II - Status and Prospects. Proceedings of Science, 449, Article 567

Elmeri Rivasto - International Conference on New Frontiers of Physics 2024

Background Reduction

GOAL: Distinguish between 1064 nm photon induced **LIGHT** pulses from background induced **DARK** pulses

- Intrinsic background
 - Radioactive decays
 - Electronic noise

- Extrinsic background
 - Black-body radiation

Black-body radiation

- Background limited by TES energy resolution
- Currently minimum rate 6.9 · 10⁻⁵ Hz

[1] Jose Alejandro Rubiera Gimeno, Dissertation 2024, Optimizing a Transition Edge Sensor detector system for low flux infrared photon measurements at the ALPS II experiment

Cryogenic Optical Filter Bench

- Ultra Narrow-Band Pass Filter: **1064 nm ± 1 nm**
 - Improve energy resolution! (TES: 1064 nm, σ =64 nm)
 - Remove pileups

Cryogenic Optical Filter Bench

- Place inside dilution fridge at ~40 K
- Main challenges:
 - Thermal contraction
 - Vibration

DESY.

 \rightarrow Misalignment

Remotely Controllable Cryogenic Piston Stages

- 3 angles + distance between fibre-end and lens
- Rotator tunes filters transmission window
- Vibrational damper stabilizes the system
- Expecting 70-80% transmission coefficient

Intrinsic background: Machine Learning

- Binary classification: LIGHT vs DARK
- Input = Time trace

- **Output** = probability that pulse is light
- Convolutional Neural Networks (CNN)

Index X y

Machine Learning: Dataset

Sampled light-pulses: 25,000 Sampled dark-pulses: 25,000

Total dataset size: 50,000

Convolutional Neural Network (CNN)

Checking for overfitting - Memorization VS Generalization

- Very well balanced model
 - Negligible generalization gap
 - No over/underfitting observed
- AUC=0.995

Determining optimal threshold

DESY.

• Determine optimal threshold based on max accuracy (~0.974)

Improvements from previous work

- Cut-based analysis
 - Discriminate pulses based on fitting parameters
 - PCA
- Machine Learning on fitting parameters
 - Random Forest Classifier (RFC)

Journal of Low Temperature Physics (2022) 209:355–362 https://doi.org/10.1007/s10909-022-02720-0

Characterising a Single-Photon Detector for ALPS II

Rikhav Shah 1 $\odot\cdot$ Katharina-Sophie Isleif $^{2}\cdot$ Friederike Januschek $^{2}\cdot$ Axel Lindner $^{2}\cdot$ Matthias Schott 1

Received: 30 October 2021 / Accepted: 28 March 2022 / Published online: 28 April 2022 @ The Author(s) 2022

RESEARCH ARTICLE

annalen physik der physik www.ann-phys.org

A First Application of Machine and Deep Learning for Background Rejection in the ALPS II TES Detector

Manuel Meyer,* Katharina Isleif, Friederike Januschek, Axel Lindner, Gulden Othman, José Alejandro Rubiera Gimeno, Christina Schwemmbauer, Matthias Schott, Rikhav Shah, and for the ALPS Collaboration

Improvements from previous work

SDU

Elmeri Rivasto – International Conference on New Frontiers of Physics 2024

Conclusions

- ALPS II is looking for axions/ALPS
- Target sensitivity: 1 photon/day
- Detection system sensitivity improvement by
 - TES
 - Cryogenic Optical Filter Bench
 - Suppression of extrinsic background (black-body radiation)
 - "Improves the energy resolution of the TES"
 - Work ongoing
 - Deep learning
 - Discrimination of intrinsic background (radioactive decays etc.)
 - CNN showed promising results: further testing/development on-going

Thank you! On the behalf of AL PS

SUPPORTING SLIDES

ALPS II - Sensitivity Reach

Black-body radiation

- Direct 1064 nm photons + pileups
 - Pileups reduced by
 - Fibre transmission losses
 - Fibre curling
 - TES structure
- Rate highly depends on TES resolution
- Currently minimum rate 6.9 · 10⁻⁵ Hz

Target sensitivity: 1 · 10⁻⁵ Hz (1 photon/day)

[1] Jose Alejandro Rubiera Gimeno, Dissertation 2024, Optimizing a Transition Edge Sensor detector system for low flux infrared photon measurements at the ALPS II experiment

Blackbody background

• Experimentally measured blackbody background rates for different TES resolutions:

Range (σ)	Analysis efficiency	Rate (I_{Ph})	Rate (h_{FFT})
-1,1	67.2%	$1.7\cdot 10^{-3} { m cps}$	$1.2\cdot 10^{-4} { m cps}$
-2,2	93.9%	$5.6\cdot 10^{-3} { m cps}$	$4.1 \cdot 10^{-4} \mathrm{cps}$
-3,3	98.1%	$1.1\cdot 10^{-2}{ m cps}$	$1.5\cdot 10^{-3} { m cps}$
0, 3	49.1%	$4.2\cdot 10^{-4} \mathrm{cps}$	$6.9\cdot 10^{-5} { m cps}$
-1,3	82.6%	$1.9\cdot 10^{-3} \mathrm{cps}$	$1.6\cdot 10^{-4} \mathrm{cps}$

Challenges: Thermal contraction $\Delta l = lpha \cdot l \cdot \Delta T$

- Invar ($Fe_{0.64}Ni_{0.36}$) is a metal with lowest known thermal expansion coefficient •
 - Good thermal conductivity Ο
 - $\alpha = 1.2 \cdot 10^{-6} \text{ K}^{-1}$

TES/SQUID

Introduction to CNNs

Hyperparameter optimization

Hyperparameter optimization

- Search space size ~10¹⁰
- Random Search
 - Dataset:
 - Total 40,000 samples
 - 32,000 for training (80-20% train./val.)
 - 8,000 for testing
 - 1000 iterations
- 1 iteration takes ~5 min (~4 days total)
 - Reduced to 1 day via parallel computing!

Hyperparameter	Optimization range	
Nb. of conv. layers	5-10	
Nb. of filters	30 - 70	
Kernel size	5 - 30	
Dropout rate	0 - 0.2	
Nb. of dense layers	1 - 3	
Max nb. of neurons	50-150	
Learning rate	$10^{-4} - 10^{-3}$	
Epochs	1 - 30	
Batch size	4 - 128	

CONV

PO

DRO

Dropout

rate

Nb. of

dense lavers

029

Elmeri Rivasto – International Conference on New Frontiers of Physics 2024

NNO

PO

CONV

Nb. of filters

РО

Nb. of convolutional layers

Optimal parameters:

Resulting **AUC=0.9954 ± 0.0004**

Hyperparameter	Optimization range	Found optimum	
Nb. of conv. layers	5-10	8	
Nb. of filters	30 - 70	52	
Kernel size	5 - 30	19	
Dropout rate	0 - 0.2	0.122	
Nb. of dense layers	1-3	3	
Max nb. of neurons	50-150	111	
Learning rate	10^{-4} -10^{-3}	10^{-4}	
Epochs	1 - 30	20	
Batch size	4 - 128	126	
CONVOLUTION POOLING CONVOLUTION POOLING CONVOLUTION POOLING	CONVOLUTION POOLING CONVOLUTION POOLING POOLING POOLING	DENSE DENDED Information DENSE DENSE DENSE DENSE	

Model: "sequential 2"

Layer (type)	Output Shape	Param #
conv1d_16 (Conv1D)	(None, 1200, 52)	1040
average_pooling1d_16 (Av gePooling1D)	vera (None, 600, 52)	0
conv1d_17 (Conv1D)	(None, 600, 52)	51428
average_pooling1d_17 (Av gePooling1D)	vera (None, 300, 52)	0
conv1d_18 (Conv1D)	(None, 300, 52)	51428
average_pooling1d_18 (Av gePooling1D)	vera (None, 150, 52)	0
conv1d_19 (Conv1D)	(None, 150, 52)	51428
average_pooling1d_19 (Av gePooling1D)	vera (None, 75, 52)	0
conv1d_20 (Conv1D)	(None, 75, 52)	51428
average_pooling1d_20 (Av gePooling1D)	vera (None, 37, 52)	0
conv1d_21 (Conv1D)	(None, 37, 52)	51428
average_pooling1d_21 (Av gePooling1D)	vera (None, 18, 52)	0
conv1d_22 (Conv1D)	(None, 18, 52)	51428
average_pooling1d_22 (Av gePooling1D)	vera (None, 9, 52)	0
conv1d_23 (Conv1D)	(None, 9, 52)	51428
average_pooling1d_23 (Av gePooling1D)	vera (None, 4, 52)	0
flatten_2 (Flatten)	(None, 208)	0
dropout_2 (Dropout)	(None, 208)	0
dense_8 (Dense)	(None, 111)	23199
dense_9 (Dense)	(None, 55)	6160
dense_10 (Dense)	(None, 27)	1512
1 11 (2)	(1)	20

Total params: 391,935 Trainable params: 391,935 Non-trainable params: 0

Elmeri Rivasto - International Conference on New Frontiers of Physics 2024

Checking for overfitting - Memorization VS Generalization

• Very well balanced model

- Negligible generalization gap
 - No over/underfitting observed
- Learning saturates already for training set size of ~5,000

Machine Learning: Metrics

Area Under the Receiver Operating Characteristics (ROC) Curve (AUC) •

Determining optimal threshold

• Determine optimal threshold based on max accuracy (~0.974)

