

The HIBEAM Experiment

HIBEAM & NNBAR – Search for neutron oscillations and beyond

Dr. Alexander Burgman Stockholm University

International Conference for New Frontiers in Physics 2024

2024-08-27

Standard Model (SM) of particle physics does not describe nature completely:

- Matter-/antimatter asymmetry
- Dark matter
- Dark energy
- Grand unification (strong+electroweak)
- Gravity

Standard Model (SM) of particle physics does not describe nature completely:

- Matter-/antimatter asymmetry
- Dark matter
- Dark energy
- Grand unification (strong+electroweak)
- Gravity

Sakharov conditions:

- Baryon number B violation
- C- and CP-symmetry violation
- Interactions out of thermal equilibrium

Standard Model (SM) of particle physics does not describe nature completely:

- Matter-/antimatter asymmetry
- Dark matter
- Dark energy
- Grand unification (strong+electroweak)
- Gravity

Sakharov conditions:

- Baryon number B violation
- C- and CP-symmetry violation
- Interactions out of thermal equilibrium

Baryon number violation (BNV) and lepton number violation (LNV) can arise together or independently: NNBAR

- $\Delta B \neq 0$ $\Delta L \neq 0$ $\Delta [B-L]=0$
- $\Delta B=0 \quad \Delta L \neq 0 \quad \Delta [B-L] \neq 0$
- $\Delta B \neq 0$ $\Delta L = 0$ $\Delta [B L] \neq 0$

Different processes:

- Sphaleron processes
- Unification models
- Supersymmetry
- Hidden sector

Baryon number violation (BNV) and lepton number violation (LNV) can $p \to e^+ + \pi^0$ $\Delta B \neq 0, \Delta L \neq 0$ arise together or independently: $\Delta B \neq 0 \quad \Delta L \neq 0 \quad \Delta [B - L] = 0$ $\Delta B=0 \quad \Delta L\neq 0 \quad \Delta [B-L]\neq 0$ $0\nu 2\beta$ $\Delta B \neq 0$ $\Delta L = 0$ $\Delta [B - L] \neq 0$ $\Delta B=0, \Delta L\neq 0$ $n \to \overline{n}$ Different processes: $\Delta B = 2, \Delta L = 0$ Sphaleron processes Unification models $n \rightarrow n'$ (mirror) $\Delta B = 1, \Delta L = 0$ Supersymmetry Hidden sector

Baryon number violation (BNV) and lepton number violation (LNV) can arise together or independently:

NNBAR

- $\Delta B \neq 0 \quad \Delta L \neq 0 \quad \Delta [B L] = 0$
- $\Delta B=0 \quad \Delta L \neq 0 \quad \Delta [B-L] \neq 0$ $\Delta B \neq 0 \quad \Delta L = 0 \quad \Delta [B - L] \neq 0$ few searches: last free neutron/antineutron in 1990s

Different processes:

- Sphaleron processes
- Unification models
- Supersymmetry
- Hidden sector

The European Spallation Source (ESS)

- Multi-disciplinary research centre

 The world's highest intensity
 source of spallation neutrons
- 17 European nations participating
- Lund, Sweden Hosts: Sweden, Denmark
- Start operations in 2027/2028.

- Spallation neutrons:
 - Nominally 2 GeV protons
 3 ms pulse, 14 Hz, (2;5) MW
 - o Rotating tungsten target
- Neutrons cold after interaction with moderators
- 15 beamlines/instruments

Beamlines and the proposed HIBEAM/NNBAR program

NNBAR

A. Burgman | ICNFP 2024 | The HIBEAM Experiment

Beamlines and the proposed HIBEAM/NNBAR program

NNBAR

R&D

Annihilation detector prototype Conceptual design reports for HIBEAM/NNBAR TDRs and small scale experiment at ESS

Beamlines and the proposed HIBEAM/NNBAR program

NNBAR

R&D

Annihilation detector prototype Conceptual design reports for HIBEAM/NNBAR TDRs and small scale experiment at ESS

HIBEAM

High precision induced: $n \rightarrow n', n \rightarrow \overline{n}$ (x10 improvement) First search for free $n \rightarrow \overline{n}$ at a spallation source NNBAR High sensitivity free $n \rightarrow \overline{n}$ (x1000 improvement) At the Large Beam Port

a constant the set

The NNBAR experiment

The NNBAR experiment

NNBAR

Reflector Optics collect large solid angle of emitted neutrons and re-focus to detector area

Eg double planar reflector

Anti-neutron annihilation detector

 $\bar{n}N \longrightarrow 5\pi$ $\sqrt{s} \sim 1.8 \text{ GeV}$ **NNBAR**

TPC + scintillators and lead-glass

Anti-neutron annihilation detector

Pion multiplicity

 $\bar{n}N \rightarrow 5\pi$

 $\sqrt{s} \sim 1.8 \text{ GeV}$

Capability of NNBAR

NNBAR

CDR: J. Neutron Res. 25 (2024) 3-4, 315-406

• Zero background experiment

• 1000-fold increase in discovery potential over previous experiments

Selection	Signal	Non-muon background	Muon background
Scintillator energy loss $\in [20, 2000]$ MeV	0.89	0.008	0.3
TPC track cut	0.87	2.3×10^{-3}	9.0×10^{-3}
Pion count ≥ 1	0.82	7.8×10^{-9}	5.9×10^{-4}
Invariant mass $W \ge 0.5 \text{ GeV}$	0.8	7.8×10^{-9}	1.5×10^{-4}
Sphericity ≥ 0.2	0.71	1.8×10^{-11}	7.8×10^{-9}
$E_{\text{scint, }y > 0, \text{ filtered}} \leqslant 320 \text{ MeV} \& E_{\text{scint, }y < 0, \text{ filtered}} \leqslant 930 \text{ MeV}$	0.68	-	-

HIBEAM neutron conversion searches

Either:

- Bespoke annihilation detector or
- WASA (Csl) crystal calorimeter

NNBAR

×10 improvement

- Neutron to antineutron
- Neutron to sterile neutron

Towards HIBEAM

Swedish Research Council research infrastructure grant to Stockholm U, Lund U, Chalmers TU, ESS

Towards HIBEAM

Swedish Research Council infrastructure grant to Stockholm U, Lund U, Chalmers TU, ESS

NNBAR

- Prototype development
 Time projection chamber
 WASA crystal calorimeter
 Scintillator/lead-glass calorimeter
- Annihilation detector
- Neutron detector
- Beamline design

A. Burgman | ICNFP 2024 | The HIBEAM Experiment

HIBEAM searching for axions

HIBEAM sensitive to axions as a dark matter candidate

arXiv:2404.15521

- Ambient axions act as a pseudomagnetic field
- Changes the Larmor frequency (magnetic moment precession)
- Detected through Ramsey interferometry

The HIBEAM/NNBAR collaboration

 Co-spokespersons: G. Brooijmans (Columbia U), D. Milstead (Stockholm U) Lead scientist: Y. Kamyshkov (Tennesee U)
 Technical Coordinator: V. Santoro (ESS, Lund U)
 Prototype coordinator: M. Holl (ESS) NNBAR

Many active institutes: SU, CTU, UU, LU (SE), ESS (SE/DK), TUM (DE), Tennessee, Columbia, ORNL (US), Krakow (PL), Rio (BR)... HIBEAM grants

- Swedish Research Council
- Swedish Foundation for Strategic Research
- Olle Engkvist Foundation
- SRC grant for collaborating with Italian institutes **NNBAR grants**
- Part of H2020 grant for ESS upgrade
- STINT award for collaborating with Brazilian institutes

Summary

Neutron oscillations

- Key portal for new physics, rarely explored
- BNV physics baryogenesis New discovery window at the ESS
- HIBEAM/NNBAR: a proposed multistage program to increase sensitivity by ~1000
 - Prototype development
 - Wide range of applications (neutron/antineutron, neutron/mirror neutron, axions, rare decays etc.)

and the

Car April March

AR COMPANY OF STATE

Thank you

A. Burgman | ICNFP 2024

TAXABLE PARTY AND ADDRESS

No. Constant Barrier

E State

Backup

Backup

2

A. Burgman | ICNFP 2024 | The HIBEAM Experiment