

Precision timing at CMS – the MIP Timing Detector

Soham Bhattacharya, Caltech (on behalf of the CMS Collaboration)

The high luminosity LHC

- The high luminosity era of the LHC
 - Baseline 0
 - 5x10³⁴ instantaneous luminosity
 - 140 pileup vertices (average)
 - Ultimate Ο
 - 7.5×10^{34} instantaneous luminosity
 - 200 pileup vertices (average)
- New challenges
 - Increased particle multiplicity Ο
 - Increased pileup and line density 0
 - High radiation dosage: >3000 fb⁻¹ towards end-of-operation (EoO) 0

Caltech

2.5

0.5

0.0

100

Precision timing to the rescue

- High pileup and line-density will degrade reconstruction
 - Increased incorrect track-vertex association 0
 - Degraded kinematics reconstruction, identification, Ο tagging, etc.
- Simply positional information not enough
- Use temporal information

Reconstructed Jet

Interesting

vertex

[arXiv:2012.06271

vertices

Pileup

vertices

- Vertices with same position, but different time Ο
- Need to achieve good precision few 10s of ps resolution 0

(14 TeV)

50+

3

Caltech

The MIP Timing Detector (MTD) – an overview

- Technology guided by radiation hardness
 - Others include segmentation/channels (low occupancy), readout, cost, schedule

Barrel Timing Layer (BTL)

- LYSO scintillator crystal bars
 - High light output, short decay time
- SiPM readout
- $\sim 38 \text{ m}^2$ active area
- ~332K channels
- $|\eta| < 1.45$
- Fluence at 4 ab^{-1} : ~2x10¹⁴ n_{eq}/cm^2

Endcap Timing Layer (ETL)

BTL

• Silicon with internal gain (LGAD)

ETL

- \circ Fast, radiation hard
- 2 double-faced disks in each endcap
 - (1.7 hits per track on average)
- ► ~14 m² active area
- ~8.5M channels
- $\bullet \quad 1.6 < |\eta| < 3$
- Fluence at 4 ab⁻¹: $\sim 2 \times 10^{15} n_{eo}/cm^2$

Barrel Timing Layer (BTL)

BTL modules

- Cerium doped Lutetium-based scintillation crystal
 - $\circ \qquad {\rm Lu^{1.8}Y.^2SiO^5:Ce \ or \ LYSO:Ce}$
 - Fast response
 - <100 ps rise time
 - ~40 ns decay time
 - \circ High light output: 40 photons per keV
 - \circ Dense: 0.86 MeV/mm for MIP
- BTL sensor module
 - \circ 16 LYSO bars
 - \circ ~ Bar axis along azimuthal direction ()
 - Each bar is $3.75 \times 3.12 \times 54.7 \text{ mm}^3$
 - \circ SiPM readout at both ends of bar
 - $\bullet 25 \ \mu m \ cell \ size$
 - Cooled with thermo-electric coolers (TECs)
- Front-end (FE) board
 - SiPM signal acquisition and digitization with TOFHIR2 ASIC [arXiv:2404.01208]
 - SiPM biasing regulated with ALDO2 ASIC [arXiv:2203.16098]

SiPM array

2 sensor modules

BTL performance [1]

- Dual readout
 - \circ $\;$ Bar (average) time ~independent of impact point
 - $\circ \quad \text{Improves resolution by } \sqrt{2}$
- Number of photoelectrons (N_{phe}) is the driving factor behind resolution
- Dark current rate (DCR) dominant at end-of-operation

BTL performance [1]

- Mitigating DCR
 - Tradeoff between gain, photon detection efficiency (PDE), power consumption
 - Optimized SiPM cell size $25 \ \mu m$ for BTL
 - Reduction of over-voltage over lifetime
 - \circ \quad CO $_2$ cooling at -35 $\,^{\circ}\mathrm{C}$
 - TECs used to reach -45 °C at SiPM [CMS-DP-2024-037]

DCR [GHz]

50

40

30

20

10

 $\sigma_{\rm c} \, {}^{
m DCR} \propto \sqrt{
m DCR} \; / \; {
m N}_{
m phe}$

- \circ $\,$ In-situ annealing (heat by reverse biasing TECs) at 60 $\,^\circ\mathrm{C}$
- $\circ ~~ {\rm TOFHIR2 \ signal \ processing}$
 - Differential leading edge discriminator (DLED)
 [A. Gola et al.]
 - Preserves fast leading edge, reduces tail and slow (correlated) baseline fluctuations

BTL performance [3]

9

- Mitigating photostatistics uncertainty
 - Fast response crystal low rise (τ_r) and decay times (τ_d)
 - \circ Dense crystal high deposited energy (E_{dep}) by MIP
 - \circ High light yield (LY) crystal
 - Large light collection efficiency (LCE)
 - Probability that a photon reaches the SiPM w/o escaping or being absorbed
 - \circ Large photon detection efficiency (PDE) of the SiPM
- Good module performance at test-beam
 - Excellent uniformity

Endcap Timing Layer (ETL)

ETL modules

Caltech

- Ultra Fast Silicon Detector (UFSD) [arXiv:1704.08666]
 - Low Gain Avalanche Detector (LGAD) technology [G. Pellegrini *et al.*]

 - $\circ ~~Gain \,{\sim} 10{\text{-}} 30 good ~for ~S/N$
 - \circ ~ Thin sensor active layer (~50 $\mu m)$
 - Fast rise time
 - Low Landau fluctuation (non-uniform charge deposition)
 - Target: signal > 8 fC at EoO (10¹⁵ n_{eq}/cm² in the innermost region)
 - Small sensor size $(1.3 \times 1.3 \text{ mm}^2 \text{ pixel})$
 - Low sensor capacitance
 - Arranged in 16×16 pad array

$$\sigma_t^2 = \sigma_{\text{Jitter}}^2 + \left[\sigma_{\text{Total ionization}} + \sigma_{\text{Local ionization}} \right]^2 + \sigma_{\text{Distortion}}^2 + \sigma_{\text{TDC}}^2$$

$$\frac{\text{Landau} (\sim 30 \text{ ps for } 50 \text{ } \mu\text{m})}{\sigma_{\text{Jitter}} \propto \frac{e_n C_d}{Q_{\text{in}}} \sqrt{t_{\text{rise}}}}$$

E field Traditional Silicon detector

16x16 arr

Ultra Fast Silicon Detector E field

11

Pixel readout – the ETROC ASIC

Caltech

- ASIC requirements
 - Low power
 - (<4 mW/channel at EoO)
 - $\circ \quad \ \ {\rm Fast \ rise \ time, \ low \ noise}$
 - $\circ \quad {\rm Contribution \ to \ resolution} < 40 \ {\rm ps}$
 - Radiation hard (100 Mrad total ionizing dose)
- The ETROC ASIC [arXiv:2011.01222]
 - 65 nm technology
 - Bump-bonded to LGAD
 - Time of arrival (TOA) and Time over threshold (TOT) measured by single TDC
 - \circ TOT used for time-walk correction

• Prototypes

- \circ ETROCO single channel
- \circ ETROC1 4x4 channel
- \circ ETROC2 16×16 channel
- ETROC3 final version

ETL performance [1]

- Sensor optimization with different vendors
- Good efficiency and resolution (pre-radiation)
- Impact of radiation damage can be mitigated by increasing bias voltage
 - \circ ~ Observed sparking damage for electric field $> 11.5~V/\mu m$
 - \circ Target performance of ~45 ps (EoO) can still be reached below this field

[Courtesy: F. Cossutti, ICHEP-24, F. Golf, Pisa-24]

Caltech

ETL performance [2]

- 4x4 LGAD+ETROC1
 - \circ ETROC wire bonded to LGAD
 - Resolution 42-46 ps
- 16x16 LGAD+ETROC2
 - $\circ \quad {\rm ETROC \ bumb \ bonded \ to \ LGAD}$
 - Resolution 45 ps
 - Consistent with ETROC1 results

$$\boldsymbol{\sigma_i} = \sqrt{0.5 \cdot \left(\sigma_{ij}^2 + \sigma_{ik}^2 - \sigma_{jk}^2\right)}$$

Caltech

Physics benefits

Pileup mitigation and reconstruction improvements

Caltech

Time of flight – particle identification (PID)

 $r/\sigma_{\rm T}$ (×100)

 $(m \times ps^{-1})$

 $\sigma_{\rm T}$

(ps)

(m)

Experiment

- Time of flight capability in PbPb collisions new at CMS!
- Proton/Kaon separation up to ~5 GeV
- Pion/Kaon separation up to ~3 GeV

0.004

0.002

0

100

Better missing momentum resolution

 \Rightarrow Better invariant mass resolution

200 300 400 500

ττ invariant mass (GeV)

Measurements and searches

* MTD 30 ps.

MTD 50 ps

MTD 70 ps.

 $M(\tilde{t}) = 1000 \text{ GeV}, M(\chi^0) = 700 \text{ GeV},$

40

20

 $\tilde{t} \rightarrow \chi^0_t + t, \chi^0_t \rightarrow Z + \tilde{G}, Z \rightarrow I^{\dagger}$

100

CT [mm]

e 10

10-2

10⁻³

600

14 TeV

ct[mm]

10⁵

10⁴

 10^{3}

 10^{2}

10

10

 10^{-2}

MTD 50 ps.

• MTD 70 ps

 $\tilde{t} \rightarrow \chi^0_1 + t, \chi^0_1 \rightarrow Z + \tilde{G}, Z \rightarrow H$

80

100

CT [mm]

 $M(\tilde{t}) = 1000 \text{ GeV}, M(\chi^0) = 700 \text{ GeV}, M(\tilde{G}) = 1 \text{ GeV}$

40 60

Reconstruction of BSM

event topologies

20

SM (MTD)

SM (no MTD)

HSCP T (M = 432 GeV)

HSCPs

10

14 TeV

GMSB 〒(M=432 GeV) - TOF MTD

CMS Phase-2 Simulation

.0^g

₩0.8

.0 ar

bigo.6

0.5

0.4

0.3

02

Summary

Summary

Caltech

- The MTD is first detector in CMS solely dedicated for precision timing
 - Challenging, state-of-the-art technologies
 - Tremendous impact on physics results
- BTL design has been fully validated
 - Assembly centers ready demonstrated capability and throughput
 - Started assembly+construction in July 2024
- ETL design is mature in final phase of prototyping
 - On track for construction in 2026

First BTL tray assembly at CERN, July 2024

Caltech

Thank you for your attention!

