XIII International Conference on New Frontiers in Physics 26 Aug - 4 Sep 2024, OAC, Kolymbari, Crete, Greece

STAR (non-spin) Highlights

Barbara Trzeciak, for the STAR Collaboration Czech Technical University in Prague

Outline

- 1 STAR detector and physics program
- 2 QCD phase diagram and QGP properties
	- Critical point, Collectivity, Vorticity, Strangeness, Dielectrons, Quarkonia
- 3 Particle production
	- Light (hyper-)nuclei production, Baryon number carrier
- 4 Detector upgrades and future

STAR detector at RHIC

➔ Wide range of collision beam **FTS EPD BEMC TPC (iTPC) TOF** $2.5 < |\eta| < 4.0$ $2.1 < |\eta| < 5.1$ $4.2 < |\eta| < 5.1$ **BSMD** $|\eta|$ < 1.5 $|n|$ < 1.0 energies $|n|$ < 1.0 ➔ Different collision species at the top **ARCHITECT** eTOF RHIC energy $-1.1 > n > -1.6$ **Forward Calorimetry** \rightarrow Increase in statistics over the years **EMCal, HCal** RHIC collision energies, species, luminosities $2.5 < \eta < 4.0$ (Run-1 to 22, excluding FXT energies) Magnet p \uparrow + p \uparrow $p^+ A u$ d+Au $h+Au$ 100 $O+O$ ➔ **BES-II upgrades**: iTPC, eTOF, EPD $Cu+Cu$ $Cu+Au$ ATAMAS REAL ➔ Forward upgrades (2022+): $Zr+Zr$ $Ru+Ru$ Au+Au Tracking: FTS, Forward Calorimetry: $U+U$ 0.01 EMCal, HCal8 9 12 15 17 20 23 27 39 54 56 62 130 193 200 410 500 510 **Center-of-mass energy** $\sqrt{s_{NN}}$ [GeV] (scale not linear) STAR Highlights | B.Trzeciak | ICNFP 2024, Crete, Greece | Sept. 3, 2024 **3**

ÆR

VPD

BES-II and Fixed-Target program

→ Explore QCD phase diagram at finite μB

- → Higher statistics than BES-I
- ➔ Wider pseudo-rapidity acceptance
- ➔ Systematically explore high baryon density region $(200 < \mu_B < 750$ MeV)
- \rightarrow Fixed target program extends μ_B reach to 750 MeV

Baryon Chemical Potential $\mu_{\rm B}$

BES-II and Fixed-Target setup

→ Explore QCD phase diagram at finite μB

STAR Highlights | B.Trzeciak | ICNFP 2024, Crete, Greece | Sept. 3, 2024 **5**

BES-II Upgrades

- ➔ **iTPC (2019+)**
	- Extended η acceptance and improved tracking and dE/dx resolution
- ➔ **eTOF (2019+)**
	- Extended PID in forward region
- ➔ **EPD (2018+)**
	- \bullet Improved EP resolution, centrality detector

A P

Search for CP: net-proton cumulants

- Cumulants of conserved charge distributions relate to correlation length in the medium
- C_4/C_2 : non-monotonic behaviour expected around critical point
	- n: net-proton multiplicity in an event $\delta n = n \langle n \rangle$; $C_2 = \langle \delta n^2 \rangle$; $C_4 = \langle \delta n^4 \rangle 3 \langle \delta n^2 \rangle$

➔ **Hint of non-monotonic trend in BES-I**

→ Solid conclusion require confirmation from precision measurements with BES-II data

STAR: PRL 127, 262301 (2021), PRC 104, 24902 (2021); PRL 128, 202302 (2022), PRC 107, 24908 (2023) HADES: PRC 102, 024914 (2020)

Search for CP: net-proton cumulants

- Cumulants of conserved charge distributions relate to correlation length in the medium
- C_4/C_2 : non-monotonic behaviour expected around critical point

- \rightarrow New high-precision BES-II measurement for $\sqrt{s_{NN}}$ = 7.7-27 GeV
- → C₄/C₂ shows minimum at ~20 GeV compared to 70-80% data and models without CP

Elliptic flow at BES-II

- Equation of State of the medium; constituent interactions and degrees of freedom
- Number of Constituent Quark Scaling: Each quark flows independently
	- Expected universal curve for v₂ vs m_T per quark Initial spatial anisotropy \rightarrow

Elliptic flow at BES-II

- Equation of State of the medium; constituent interactions and degrees of freedom
- Number of Constituent Quark Scaling: Each quark flows independently
	- **Universal curve for** v_2 **vs m_{** T **} per quark at** $\sqrt{s_{NN}}$ **> 7.7 GeV**

Initial spatial anisotropy → Pressure gradient → Momentum space anisotropy $E\frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_{\rm T}dp_{\rm T}dy} \left(1 + \sum 2v_{\rm n} \cos n(\phi - \Psi_{\rm n}^{\rm EP})\right)$

 $₂$ reflect asymmetry on X-Y plane</sub>

- → Partonic collectivity at $\sqrt{s_{NN}}$ = 7.7 200 GeV; $\sqrt{s_{NN}}$ = 3 GeV: hadronic interactions dominate
- ➔ Change of degrees of freedom 3 7.7 GeV ?

Elliptic flow at high high μ_B region

Light and strange hadron elliptic flow

- \rightarrow v₂ NCQ scaling breaks at $\sqrt{s_{NN}}$ = 3.2 GeV and below, gradually restores towards 4.5 GeV
	- ➔ **Dominance of hadronic matter at the high-baryon-density region**
- **→ Negative → positive v₂: Out-of-plane → In-plane expansion** between 3 4.5 GeV

Energy dependence of v₁ slope at high μ_B

Sensitive probe of the Equation of State of the dense matter

Baryonic Mean Field: p dependent Soft EoS, the nuclear incompressibility K = 210 MeV

-
- target $(n<0)$

v1 reflect asymmetry along *x* direction

Figure: Phys. Rev. Lett. 111, 232302 (2013)

projectile

participant zone

projectile spectators \bigcap target spectators

 $\rightarrow \pi$, K, p, \land measured across collision

➔ Hadronic transport model JAM2 with

baryonic mean-field interactions better

➔ EoS dominated by baryonic interactions

as collision energy increases

 \rightarrow Positive v₁ slope; v₁ slope of baryons drops

energies at high μ_B

describe data

at high μ_B

 π^{+}/π : 0.2 < p_r < 1.6 GeV/c

Strangeness production at high μB

- Sensitivity to nuclear Equation of State
- Comprehensive measurements of strange hadron production at FXT energies

- ➔ Grand Canonical Ensemble (GCE) fails for $\sqrt{s_{NN}}$ < 4 GeV;
	- ➔ Local strangeness conservation required **Canonical Ensemble favored**, with strangeness correlation length 2.9 - 3.9 fm
- ➔ **Change of medium properties at the highbaryon-density region**

Global Λ polarization

Acta Phys. Sin. Vol. 72, No. 7(2023) 072401

Acta Phys. Sin. Vol. 72, No. 7(2023) 072401

- → Increasing global polarization, P_H, trend down to $\sqrt{\mathsf{s}}_\mathsf{NN}$ = 3 GeV
- ➔ **Difference between Λ and anti-Λ ?**

Energy dependence of Λ polarization

- → New STAR preliminary results at $\sqrt{s_{NN}}$ =7.7-17.3 GeV from BES-II: significant improvement in precision
- \rightarrow No splitting between Λ and anti-Λ global polarization within uncertainties
	- ➔ Upper limit on late stage magnetic field

- 95% confidence level STAR, PRC 108,014910(2023)
- $B < 9.4 \times 10^{12}$ T at 19.6 GeV
- $B < 1.4 \times 10^{13}$ T at 27 GeV

Thermal dielectron spectra

Direct access to temperature of QGP phase and partonic \rightarrow hadron phase transition

➔ Clear enhancement compared to hadronic cocktail in both low mass region (LMR) and intermediate mass region (IMR)

AR

Thermal dielectrons vs μ_B

Direct access to temperature of QGP phase and partonic \rightarrow hadron phase transition

- \rightarrow T^{LMR} is close to both T_{ch} and T_{pc} \rightarrow Emitted from hadronic phase
- \rightarrow T^{IMR} is higher than T^{LMR} \rightarrow Emitted from partonic QGP phase
- → The integrated excess yield (data cocktail, normalized by $N\pi$ ^o) shows a hint of decreasing trend with increasing μ_B
- ➔ Connection between STAR BES-I and HADES data

 \rightarrow No significant energy dependence of the J/ ψ suppression at RHIC at similar N_{part}

- \rightarrow Central collisions: no significant energy dependence from $\sqrt{s_{NN}}$ = 7.7 up to 200 GeV
	- ➔ Interplay of dissociated and regeneration effects from RHIC to LHC energies

Sequential suppression of quarkonia

Medium thermodynamic properties

- ➔ Hint of sequential Upsilon suppression in isobar collisions, similar to that in Au+Au at similar $part$
- ➔ First observation of charmonium sequential suppression in heavy-ion collisions at RHIC

Hypernuclei production in HI collisions

- **Production mechanism of hypernuclei is still not well understood**
- Natural laboratory to study **Hyperon-Nucleon (Y-N) interactions** → EOS of neutron stars

- \rightarrow High baryon density \rightarrow enhanced production of hypernuclei
- **→ RHIC BES-II offers great opportunity for** hypernuclei measurements.

Hypernuclei production and lifetime

STAR preliminary PRC 76(2007)035501 NPA 639(1998)251c

500

200

100

300

Lifetime [ps]

400

- \rightarrow First energy dependence of ³_^H production yields in high-μ_B region
	- ➔ Hadronic transport + coalescence models qualitatively describe the data
- ➔ The first observation of **Anti-Hyper-Hydrogen-4**
- ➔ Precise ⁴ **^ΛH and ⁴ ^ΛHe lifetimes** measurements in heavy-ion collisions
- ➔ Towards quantitative understanding of Y-N interaction

Hypernuclei <p_T> at high μ_B

 \rightarrow $\langle p_{\text{T}} \rangle$ vs mass follows a linear mass scaling at $\sqrt{s_{NN}}$ = 3.0, 3.2, 3.5 GeV

 \rightarrow Particle yields $+< p_T$ slope + v_1 slope (backup) support coalescence picture of hypernuclei production at mid-rapidity

AVE

Light (hyper-)Nuclei-to-Hadron ratios

- ➔ Thermal model overpredicts t/p and ³_ΛH /Λ ratios
- \blacktriangleright Suggests that $^3_\Lambda$ H and t yields are not in equilibrium and fixed at chemical freeze-out simultaneously with other hadrons

STAR, PRL 130 (2023) 202301 STAR, arXiv: 2311.11020 T. Reichert, et al, PRC 107 (2023) 014912

Baryon number carrier

➔ significantly higher than naïve expectation of 1 for valence quarks carrying baryon number

X. Artru, Nucl. Phys. B 85 (1975) 442 G. C. Rossi, G. Veneziano, Nucl. Phys. B 123 (1977) 507

- Consist of low-momentum gluons
- \triangleright Easier to be stopped at midrapidity

Junctions:

 $Q < B \times Z/A$

➔ Central collisions, B×ΔZ/A ~ 2×ΔQ

Baryon number carrier

- ➔ Central collisions, B×ΔZ/A ~ 2×ΔQ
	- ➔ significantly higher than naïve expectation of 1 for valence quarks carrying baryon number

- ➔ Three independent experimental tests performed
	- ➔ Isobar collisions: significantly more baryon transport than charge transport
	- ➔ γ+Au: clear baryon transport with a rapidity slope smaller than PYTHIA predictions
	- ➔ Au+Au: rapidity slope independent of centrality
- ➔ All disfavour the scenario where the baryon number is carried by valence quarks

Strangeness production at high energy

- Strangeness production dependence on the colliding system
- d+Au: bridge the multiplicity gap between peripheral A+A and *p*+*p*

Hyperon-to-pion yield ratio

➔ Strangeness production seems to follow a global trend mainly driven by event multiplicity

K[∗]⁰ resonance production in isobar collisions

Resonance/non-resonance ratio, re-scattering and regeneration effects \rightarrow probing hadronic phase

AVE E.

➔ Evidence of late stage hadronic re-scattering effect

Forward Upgrade and 2023-25 Runs

➔ **Forward Tracking System (FTS)**

Forward Silicon Tracker (FST) Forward Small-strip Thin Gap Chambers Tracker (FTT)

➔ **Forward Colorimeter System (FCS)**

Electromagnetic Calorimeter

STAR Highlights | B.Trzeciak | ICNFP 2024, Crete, Greece | Sept. 3, 2024 **27** Hadronic Calorimeter

➔ **Hot QCD – study of microstructure of QGP**

Au+Au @200 GeV (2023 & 25)

- What is the nature of the 3-dimensional initial state at RHIC energies?
- What can be learned about confinement from charmonia measurements?
- What are the electrical, magnetic and chiral properties of the medium?
- What is the precise nature of the transition near $\mu_{\text{\tiny B}}^{\text{\tiny{}}}=0$?

- ➔ **Cold QCD: Equal N-N luminosities in pp and pAu in 2024 essential to optimize several critical measurements**
	- First look gluon GPD \rightarrow Eg
	- Nuclear dependence of PDFs, FF, and TMDs
	- Non-linear effects in QCD

❍ Very rich STAR physics program with wide range of colliding species and colliding energies

- ❍ Stay tuned for more BES-II and FXT results
- ❍ More cold and hot QCD studies with p+p, p+Au and Au+Au @ 200 GeV taken in 2023-2025

Thank you !

Backup

Energy Dependence of C4 /C2: Comparison with BES-I

- Cumulants of conserved charge distributions relate to correlation length in the medium
- C4/C2: non-monotonic behaviour expected around critical point

Deviation between BES-II and BES-I data

- \rightarrow New high-precision BES-II measurement for $\sqrt{s_{NN}}$ = 7.7-27 GeV
- **→ BES-II results consistent with BES-I within uncertainties**

Anisotropic flow

- Anisotropies in particle momentum distributions
- Initial spatial anisotropy \rightarrow Pressure gradient \rightarrow Momentum space anisotropy
- Initial electromagnetic field \rightarrow Directed flow

$$
E\frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + \sum_{1}^{\infty} 2v_n \cos\left[n\left(\phi - \psi_r\right)\right] \right)
$$

$$
v_1 = \cos\left(\phi - \psi_r\right) = \left\langle \frac{p_x}{p_T} \right\rangle \qquad \text{directed flow}
$$

$$
v_2 = \cos\left[2(\phi - \psi_r)\right] = \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right\rangle \qquad \text{elliptic flow}
$$

- 1) Equation of State of the medium
- 2) Constituent interactions and degree of freedom

p_T dependence of v_2 at 3.0 - 4.5 GeV

- \rightarrow Clear energy dependence for $v_2(p_T)$ from negative to positive: **Shadowing effect**
- ➔ JAM + baryonic Mean Field better describe the 3.2 GeV while underestimate 4.5 GeV data

STAR Highlights | B.Trzeciak | ICNFP 2024, Crete, Greece | Sept. 3, 2024 **32** Baryonic Mean Field: p dependent Soft EoS, the nuclear incompressibility K = 210 MeV

p_{T} dependence of v_1 slope at high μ_B

projectile (n>0)

participant zone

Energy dependence of nuclei <pT>

- Similar $\langle p_T \rangle$ for ${}^{3}_{\Lambda}H$ and t
- Blast-wave fit using measured kinetic freeze-out \bullet parameters from light hadrons (π, K, p) overestimates both ${}^{3}_{\Lambda}$ H and t

 $^{3}_{\Lambda}$ H and t do not follow same collective expansion as light hadrons. Can be interpreted as ${}^{3}_{\Lambda}\mathrm{H}$ and t decoupling at different times compared to light hadrons

• Different trend for
$$
\sqrt{s_{NN}}
$$
 = 3-4.5 GeV and $\sqrt{s_{NN}}$ = 7.7-27 GeV

• Suggest different expansion dynamics?

Light nuclei collectivity vs energy

- ➔ **AMPT(SM) model with coalescence describes deuteron v2 and v³**
- ➔ **Insight into light nuclei production mechanism in HI collisions**

➔ **Light nuclei v2 obeys mass number scaling at ~30% level in BES energies**

Directed flow of light and hyper nuclei at high μ_B

➔ **v1 slope: consistent with hadronic transport model (JAM2 mean field + Coalescence)**

➔ **Particle yields + <pT> slope + v1 slope support coalescence picture of light (hyper-)nuclei production**

Energy dependence of S³

A prominent enhancement of the strangeness population factor S_3 was proposed as a probe for deconfinement

$$
S_3 = \frac{\lambda H}{3He \times \frac{\Lambda}{p}}
$$

- **→** Data shows a mild increasing trend from S_{NN} = 3.0 GeV to 2.76 TeV
- ➔ Thermal-FIST, which includes feed-down from unstable nuclei to stable p, 3He, describes the S_3 data better
	- ➔ Feed-down from unstable nuclei important

A. Andronic et al, PLB 697 (2011) 203 (Thermal (GSI)) S. Zhang, PLB 684 (2010) 224 (Coal.+AMPT) T. Reichert, et al, PRC 107 (2023) 014912 (UrQMD, Thermal-FIST)

³ለH/A and S₃ dependence on the system size

Measurement in isobar collisions at 200 GeV

→ STAR and ALICE data consistent

→ Similar mechanisms for hypernuclei production at RHIC and LHC energies

Analytical Coalescence: K.-J. Sun et.al., PLB 792, 132–137 (2019) MUSIC + UrQMD + Coalescence: K.-J. Sun et.al. arXiv:2404.02701 Thermal-Fist:: V. Vovchenko, H. Stoecker, Comput. Phys. Commun. 244, 295-310 (2019)

Baryon number carrier

Valence Quarks

- \triangleright Carry large momentum fractions
- \triangleright Hard to be stopped at midrapidity o $dN/d\Delta y \sim \exp(-2.4\Delta y)$ (PYTHIA)

 $\Delta y = Y_{\text{beam}} - y$

Valence Quarks:

 \bullet Q ~ B \times Z/A

Junctions

X. Artru, Nucl. Phys. B 85 (1975) 442 G. C. Rossi, G. Veneziano, Nucl. Phys. B 123 (1977) 507

- \triangleright Consist of low-momentum gluons
- \triangleright Easier to be stopped at midrapidity $dN/d\Delta y \sim \exp(-0.5\Delta y)$ (theory) \circ

Theory: D. Kharzeev, PLB 378 (1996) 238

Junctions:

VS.

 \bullet Q < B \times Z/A

Baryon number carrier (2)

- ➔ Test 2: Net-proton dN/dΔy in γ+Au events
- ➔ Test 3: Net-proton vs. Rapidity Shift in Au+Au events

 \rightarrow Clear excess of p over anti-p \rightarrow incoming photons can stop baryon number

Junction theory: D. Kharzeev, PLB 378 (1996) 238

No centrality dependence of the slope \rightarrow ▶ not expected for valence quark stopping

$$
\triangleright \quad Slope_{\gamma+\mathrm{Au}} \sim Slope_{\mathrm{Au}+\mathrm{Au}}
$$

- Qualitatively consistent with baryon junction prediction
- Smaller than HERWIG and PYTHIA \blacktriangleright predictions

AV R