

STAR (non-spin) Highlights

Barbara Trzeciak, for the STAR Collaboration Czech Technical University in Prague

Outline

- 1 STAR detector and physics program
- 2 QCD phase diagram and QGP properties
 - Critical point, Collectivity, Vorticity, Strangeness,
 Dielectrons, Quarkonia
- 3 Particle production
 - Light (hyper-)nuclei production, Baryon number carrier
- 4 Detector upgrades and future

STAR talks at the ICNFP Conference:

STAR Correlations, Fluctuations Yu Hu

STAR Flow, Chirality, Vorticity Yicheng Feng

> STAR CME in Isobars Jagbir Singh

STAR Jet Highlights Tanmay Pani

STAR Spin Highlights
Ting Lin

STAR Forward Spin Physics
Xilin Liang

STAR detector at RHIC

→ Wide range of collision beam energies

100

- → Different collision species at the top RHIC energy
- → Increase in statistics over the years

RHIC collision energies, species, luminosities (Run-1 to 22, excluding FXT energies)

- → **BES-II upgrades**: iTPC, eTOF, EPD
- → Forward upgrades (2022+): Tracking: FTS, Forward Calorimetry: EMCal, HCal

Center-of-mass energy $\sqrt{s_{NN}}$ [GeV] (scale not linear)

BES-II and **Fixed-Target** program

→ Explore QCD phase diagram at finite µ_B

- → Higher statistics than BES-I
- → Wider pseudo-rapidity acceptance
- → Systematically explore high baryon density region (200 < µ_B < 750 MeV)</p>
- → Fixed target program extends µ_B reach to 750 MeV

Baryon Chemical Potential μ_B

BES-II and **Fixed-Target** setup

STAR

→ Explore QCD phase diagram at finite µ_B

BES-II Upgrades

→ iTPC (2019+)

- Extended η acceptance and improved tracking and dE/dx resolution
- → eTOF (2019+)
 - Extended PID in forward region
- → EPD (2018+)
 - Improved EP resolution, centrality detector

STAR Highlights | B.Trzeciak | ICNFP 2024, Crete, Greece | Sept. 3, 2024

Search for CP: net-proton cumulants

- Cumulants of conserved charge distributions relate to correlation length in the medium
- C_4/C_2 : non-monotonic behaviour expected around critical point
 - n: net-proton multiplicity in an event $\delta n=n-\langle n \rangle$; $C_2=\langle \delta n^2 \rangle$; $C_4=\langle \delta n^4 \rangle -3\langle \delta n^2 \rangle$

- → Hint of non-monotonic trend in BES-I
- → Solid conclusion require confirmation from precision measurements with BES-II data

Collision Energy $\sqrt{s_{NN}}$ (GeV)

STAR: PRL 127, 262301 (2021), PRC 104, 24902 (2021); PRL 128, 202302 (2022), PRC 107, 24908 (2023) HADES: PRC 102, 024914 (2020)

Search for CP: net-proton cumulants

- Cumulants of conserved charge distributions relate to correlation length in the medium
- C₄/C₂: non-monotonic behaviour expected around critical point

- → New high-precision BES-II measurement for $\sqrt{s_{NN}}$ = 7.7-27 GeV
- → C₄/C₂ shows minimum at ~20 GeV compared to 70-80% data and models without CP

Elliptic flow at BES-II

STAR

- Equation of State of the medium; constituent interactions and degrees of freedom
- Number of Constituent Quark Scaling: Each quark flows independently
 - Expected universal curve for v₂ vs m_T per quark

Initial spatial anisotropy →
Pressure gradient →
Momentum space anisotropy

$$E\frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + \sum 2v_n \cos n(\phi - \Psi_n^{EP}) \right)$$

Elliptic flow at BES-II

STAR

- Equation of State of the medium; constituent interactions and degrees of freedom
- Number of Constituent Quark Scaling: Each quark flows independently
 - Universal curve for v_2 vs m_T per quark at $\sqrt{s_{NN}} > 7.7$ GeV

Initial spatial anisotropy →
Pressure gradient →
Momentum space anisotropy

$$E\frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + \sum 2v_n \cos n(\phi - \Psi_n^{EP}) \right)$$

- → Partonic collectivity at $\sqrt{s_{NN}}$ = 7.7 200 GeV; $\sqrt{s_{NN}}$ = 3 GeV: hadronic interactions dominate
- → Change of degrees of freedom 3 7.7 GeV?

Elliptic flow at high high μ_B region

STAR

Light and strange hadron elliptic flow

- → v_2 NCQ scaling breaks at $\sqrt{s_{NN}}$ = 3.2 GeV and below, gradually restores towards 4.5 GeV
 - → Dominance of hadronic matter at the high-baryon-density region
- → Negative → positive v₂: Out-of-plane → In-plane expansion between 3 4.5 GeV

Energy dependence of v₁ slope at high μ_B

Sensitive probe of the Equation of State of the dense matter

- \rightarrow π , K, p, Λ measured across collision energies at high μ_B
- → Positive v₁ slope; v₁ slope of baryons drops as collision energy increases
- → Hadronic transport model JAM2 with baryonic mean-field interactions better describe data
 - ightharpoonup EoS dominated by baryonic interactions at high μ_B

Figure: Phys. Rev. Lett. 111, 232302 (2013)

Strangeness production at high µ_B

- Sensitivity to nuclear Equation of State
- Comprehensive measurements of strange hadron production at FXT energies

- → Grand Canonical Ensemble (GCE) fails for √s_{NN} < 4 GeV;</p>
 - → Local strangeness conservation required Canonical Ensemble favored, with strangeness correlation length 2.9 - 3.9 fm
- → Change of medium properties at the highbaryon-density region

Vorticity of the medium and magnetic field

Acta Phys. Sin. Vol. 72, No. 7(2023) 072401

Fluid vorticity $\rightarrow \Lambda$, anti- Λ in same direction

$$\omega = k_B T (P_\Lambda + P_{\bar{\Lambda}})/\hbar$$

Magnetic field $\rightarrow \Lambda$, anti- Λ in opposite direction

$$B = \frac{T}{2\mu_{\Lambda}} (P_{\Lambda} - P_{\bar{\Lambda}})$$

- → Increasing global polarization, P_H , trend down to $\sqrt{s_{NN}}$ = 3 GeV
- \rightarrow Difference between Λ and anti- Λ ?

$$\overline{P_{\Lambda}} || - \overline{B}$$

Energy dependence of Λ polarization

- → New STAR preliminary results at $\sqrt{s_{NN}}$ =7.7-17.3 GeV from BES-II: significant improvement in precision
- \rightarrow No splitting between Λ and anti- Λ global polarization within uncertainties
 - → Upper limit on late stage magnetic field

- 95% confidence level STAR, PRC 108,014910(2023)
- $B < 9.4 \times 10^{12} T$ at 19.6 GeV
- $B < 1.4 \times 10^{13} T$ at 27 GeV

Thermal dielectron spectra

■ Direct access to temperature of QGP phase and partonic → hadron phase transition

→ Clear enhancement compared to hadronic cocktail in both low mass region (LMR) and intermediate mass region (IMR)

Thermal dielectrons vs μ_B

■ Direct access to temperature of QGP phase and partonic → hadron phase transition

→ T^{IMR} is higher than T^{LMR} → Emitted from partonic QGP phase

- The integrated excess yield (data cocktail, normalized by Nπ⁰) shows a hint of decreasing trend with increasing μ_B
- → Connection between STAR BES-I and HADES data

Energy dependence of J/ψ production

Medium thermodynamic properties

- ightharpoonup No significant energy dependence of the J/ ψ suppression at RHIC at similar N $_{part}$
- → Central collisions: no significant energy dependence from $\sqrt{s_{NN}} = 7.7$ up to 200 GeV
 - → Interplay of dissociated and regeneration effects from RHIC to LHC energies

Sequential suppression of quarkonia

Medium thermodynamic properties

- → Hint of sequential Upsilon suppression in isobar collisions, similar to that in Au+Au at similar <N_{part}>
- → First observation of charmonium sequential suppression in heavy-ion collisions at RHIC

18

Hypernuclei production in HI collisions

- Production mechanism of hypernuclei is still not well understood
- Natural laboratory to study Hyperon-Nucleon (Y-N) interactions → EOS of neutron stars

- → High baryon density → enhanced production of hypernuclei
- → RHIC BES-II offers great opportunity for hypernuclei measurements.

Hypernuclei production and lifetime

STAR, PRL 128 (2022) 202301 ALICE, PLB 754 (2016) 360 T. Reichert, et al, PRC 107 (2023) 014912

- ⇒ First energy dependence of ${}^{3}_{\Lambda}$ H production yields in high- μ_{B} region
 - → Hadronic transport + coalescence models qualitatively describe the data
- → The first observation of **Anti-Hyper-Hydrogen-4**
- → Precise ⁴_AH and ⁴_AHe lifetimes measurements in heavy-ion collisions
- → Towards quantitative understanding of Y-N interaction

Hypernuclei <p_T> at high μ_B

- \rightarrow (p_T) vs mass follows a linear mass scaling at $\sqrt{s_{NN}}$ = 3.0, 3.2, 3.5 GeV
- → Particle yields + <p_T> slope + v₁ slope (backup) support coalescence picture of hypernuclei production at mid-rapidity

Light (hyper-)Nuclei-to-Hadron ratios

- → Thermal model overpredicts t/p and ³ΛH /Λ ratios
- → Suggests that ³_AH and t yields are not in equilibrium and fixed at chemical freeze-out simultaneously with other hadrons

STAR, PRL 130 (2023) 202301 STAR, arXiv: 2311.11020 T. Reichert, et al, PRC 107 (2023) 014912

Baryon number carrier

- → Central collisions, B×ΔZ/A ~ 2×ΔQ
 - → significantly higher than naïve expectation of 1 for valence quarks carrying baryon number

Valence Quarks

- > Carry large momentum fractions
- ➤ Hard to be stopped at midrapidity

Valence Quarks:

• $Q \sim B \times Z/A$

Junctions

- X. Artru, Nucl. Phys. B 85 (1975) 442 G. C. Rossi, G. Veneziano, Nucl. Phys. B 123 (1977) 507
- Consist of low-momentum gluons
- Easier to be stopped at midrapidity

Junctions:

• $Q < B \times Z/A$

Baryon number carrier

STAR

- → Central collisions, B×ΔZ/A ~ 2×ΔQ
 - → significantly higher than naïve expectation of 1 for valence quarks carrying baryon number

Valence Ouarks

- → Three independent experimental tests performed
 - → Isobar collisions: significantly more baryon transport than charge transport
 - γ+Au: clear baryon transport with a rapidity slope smaller than PYTHIA predictions
 - → Au+Au: rapidity slope independent of centrality
- → All disfavour the scenario where the baryon number is carried by valence quarks

Strangeness production at high energy

- Strangeness production dependence on the colliding system
- d+Au: bridge the multiplicity gap between peripheral A+A and p+p

→ Strangeness production seems to follow a global trend mainly driven by event multiplicity

K*0 resonance production in isobar collisions

Resonance/non-resonance ratio, re-scattering and regeneration effects → probing hadronic phase

 $\tau_{K^{*0}} \sim 4 \text{ fm/c}$ Regeneration gain K^{*0} Re-scattering loss Unaffected $\tau_{\phi} \sim 45 \text{ fm/c}$ Medium lifetime

→ Evidence of late stage hadronic re-scattering effect

Forward Upgrade and 2023-25 Runs

→ Forward Tracking System (FTS)

Forward Silicon Tracker (FST)
Forward Small-strip Thin Gap Chambers
Tracker (FTT)

→ Forward Colorimeter System (FCS)

Electromagnetic Calorimeter

Hadronic Calorimeter

→ Hot QCD – study of microstructure of QGP

Au+Au @200 GeV (2023 & 25)

- What is the nature of the 3-dimensional initial state at RHIC energies?
- What can be learned about confinement from charmonia measurements?
- What are the electrical, magnetic and chiral properties of the medium?
- What is the precise nature of the transition near $\mu_{\text{\tiny B}}$ =0?

 Cold QCD: Equal N-N luminosities in pp and pAu in 2024 essential to optimize several critical measurements

- First look gluon GPD → Eq
- Nuclear dependence of PDFs, FF, and TMDs
- Non-linear effects in QCD

Summary

- Very rich STAR physics program with wide range of colliding species and colliding energies
- Stay tuned for more BES-II and FXT results
- More cold and hot QCD studies with p+p, p+Au and Au+Au @
 200 GeV taken in 2023-2025

Thank you!

Backup

Energy Dependence of C₄ /C₂: Comparison with BES-I

- Cumulants of conserved charge distributions relate to correlation length in the medium
- C₄/C₂: non-monotonic behaviour expected around critical point

Deviation between BES-II and BES-I data

$\sqrt{s_{NN}}$ (GeV)	0-5%	70-80%	
7.7	1.0σ	0.9σ	
11.5	0.4σ	1.3σ	
14.6	2.2σ	2.5σ	
19.6	0.7σ	0.0σ	
27	1.4σ	0.2σ	

- → New high-precision BES-II measurement for $\sqrt{s_{NN}}$ = 7.7-27 GeV
- BES-II results consistent with BES-I within uncertainties

Anisotropic flow

STAR

- Anisotropies in particle momentum distributions
- Initial spatial anisotropy → Pressure gradient → Momentum space anisotropy
- Initial electromagnetic field → Directed flow

$$E\frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + \sum_{1}^{\infty} 2v_n \cos\left[n\left(\phi - \psi_r\right)\right] \right)$$

$$v_1 = \cos(\phi - \psi_r) = \left\langle \frac{p_x}{p_T} \right\rangle$$
 directed flow

$$v_2 = \cos\left[2(\phi - \psi_r)\right] = \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right\rangle$$
 elliptic flow

- 1) Equation of State of the medium
- 2) Constituent interactions and degree of freedom

p_T dependence of v₂ at 3.0 - 4.5 GeV

- \rightarrow Clear energy dependence for $v_2(p_T)$ from negative to positive: **Shadowing effect**
- → JAM + baryonic Mean Field better describe the 3.2 GeV while underestimate 4.5 GeV data

p_T dependence of v₁ slope at high μ_B

- \rightarrow Anti-fow of π^+ and K_S^0 , K^{\pm}
- → Anti-fow could be explained by shadowing effect from spectators

Energy dependence of nuclei <p_T>

- Similar $\langle p_T \rangle$ for ${}^3_{\Lambda}H$ and t
- Blast-wave fit using measured kinetic freeze-out parameters from light hadrons (π , K, p) **overestimates** both $^3_\Lambda H$ and t

 $^3_\Lambda H$ and t do not follow same collective expansion as light hadrons. Can be interpreted as $^3_\Lambda H$ and t decoupling at different times compared to light hadrons

- Different trend for $\sqrt{s_{NN}}$ = 3-4.5 GeV and $\sqrt{s_{NN}}$ = 7.7-27 GeV
 - Suggest different expansion dynamics?

Light nuclei collectivity vs energy

- → AMPT(SM) model with coalescence describes deuteron v₂ and v₃
- → Insight into light nuclei production mechanism in HI collisions

Light nuclei collectivity vs energy

→ Light nuclei v₂ obeys mass number scaling at ~30% level in BES energies

Directed flow of light and hyper nuclei at high μ_B

- → v₁ slope: consistent with hadronic transport model (JAM2 mean field + Coalescence)
- → Particle yields + <p_T> slope + v₁ slope support coalescence picture of light (hyper-)nuclei production

Energy dependence of S₃

A prominent enhancement of the strangeness population factor S₃ was proposed as a probe for deconfinement

$$S_3 = \frac{{}^{3}_{\Lambda}H}{{}^{3}_{He} \times \frac{\Lambda}{p}}$$

- → Data shows a mild increasing trend from s_{NN} = 3.0 GeV to 2.76 TeV
- → Thermal-FIST, which includes feed-down from unstable nuclei to stable p, ³He, describes the S₃ data better
 - → Feed-down from unstable nuclei important

E864. PRC 70 (2004) 024902

A. Andronic et al, PLB 697 (2011) 203 (Thermal (GSI)) S. Zhang, PLB 684 (2010) 224 (Coal.+AMPT) T. Reichert, et al, PRC 107 (2023) 014912 (UrQMD, Thermal-FIST)

³_ΛH/Λ and S₃ dependence on the system size

Measurement in isobar collisions at 200 GeV

- → STAR and ALICE data consistent
- → Similar mechanisms for hypernuclei production at RHIC and LHC energies

Significance of deviation	Ana. coal. (2-body)	Ana. coal. (3-body)	MUSIC+UrQMD+Coal (average B_{Λ})	Thermal
$^3_\Lambda { m H}/\Lambda$	3.8σ	1.9 σ	3.8σ	> 5 σ
S_3	6.6σ	3.9σ	3.6σ	> 8 σ

Analytical Coalescence:

K.-J. Sun et.al., PLB 792, 132-137 (2019)

MUSIC + UrQMD + Coalescence:

K.-J. Sun et.al. arXiv:2404.02701

Thermal-Fist::

V. Vovchenko, H. Stoecker, Comput. Phys. Commun. 244, 295-310 (2019)

Baryon number carrier

Valence Quarks

- ➤ Carry large momentum fractions
- ➤ Hard to be stopped at midrapidity
 - o $dN/d\Delta y \sim \exp(-2.4\Delta y)$ (PYTHIA)

Valence Quarks:

• $Q \sim B \times Z/A$

Junctions

X. Artru, Nucl. Phys. B 85 (1975) 442G. C. Rossi, G. Veneziano, Nucl. Phys. B 123 (1977) 507

- Consist of low-momentum gluons
- Easier to be stopped at midrapidity
 - o $dN/d\Delta y \sim \exp(-0.5\Delta y)$ (theory)

Theory: D. Kharzeev, PLB 378 (1996) 238

Junctions:

• $Q < B \times Z/A$

Baryon number carrier (2)

STAR

- → Test 2: Net-proton dN/d∆y in y+Au events
- → Test 3: Net-proton vs. Rapidity Shift in Au+Au events

→ Clear excess of p over anti-p → incoming photons can stop baryon number

y+Au vs. Au+Au vs. Theory

- ➤ No centrality dependence of the slope → not expected for valence quark stopping
- \gt $Slope_{\gamma+Au} \gt \sim Slope_{Au+Au}$
- Qualitatively consistent with baryon junction prediction
- Smaller than HERWIG and PYTHIA predictions

Junction theory: D. Kharzeev, PLB 378 (1996) 238

42