Overview of STAR measurements on flow, chirality, and vorticity – XIII International Conference on New Frontiers in Physics, ICNFP2024

> Yicheng Feng (for the STAR Collaboration)

PURDUE UNIVERSITY.

Purdue University

September 3, 2024

Physics of interest

Quark Gluon Plasma (QGP) produced in high energy heavy-ion collisions (HIC) QGP: deconfined quarks and gluons over extended volume HIC: nuclei (e.g., Au) collide at nearly the speed of light

$\blacktriangleright \ \ \text{Collective motion} \rightarrow \text{flow}$

 $\mathsf{QGP}\xspace$ phase transition, equation of state of medium produced, nuclei shape, \ldots

► Global angular momentum (vorticity) → spin polarization

rotation of QCD matter, spin degree of freedom

QCD vacuum fluctuation → chirality anomaly
 + Magnetic field → chiral magnetic effect (CME)
 𝒫 and 𝔅𝒫 violation in strong interaction

Some of the recent experiments at STAR

Beam Energy Scan (BES): Au+Au collisions at different energies $(\sqrt{s_{NN}})$

- BES-II (2018-2021): large increase of statistics
- FXT (2018-2021): fixed target experiments, lower collision energy
- Study the phases of QCD matter and search for QCD critical point, varying baryon chemical potential (μ_B)

Isobar collisions (2018): ${}^{96}_{44}$ Ru + ${}^{96}_{44}$ Ru vs ${}^{96}_{40}$ Zr + ${}^{96}_{40}$ Zr

- Complication: nuclear structure difference
- Comparison to search for the chiral magnetic effect (CME)

STAR detector

Outline

Δv_1 combination dependence on charge and strangeness

- Assume coalescence hadronization; EM effect \rightarrow splitting $\propto \Delta q$.
- qualitatively consistent with Hall effect (Hall>Faraday+Coulomb) in 10-40% centrality

Other possibility: baryon inhomogeneities? [Parida, Chatterjee, arXiv:2305.08806] simultaneous fit on Δq and $\Delta S?$ [Nayak, Shi, Lin, PLB849(2024)138479]

v_1 splitting and possible EM effect

Other possibility: baryon inhomogeneities? [Parida, Chatterjee, arXiv:2305.08806] $\rightarrow \Lambda$, p: similar splitting 7/16

Excess proton flow v_1 in BES-II

Proton directed flow is predicted to be a sensitive probe of the EoS of the produced medium.

$$N_p v_{1,p} = N_p v_{1,\text{medium}} + (N_p - N_{\bar{p}}) v_{1,\text{excess}}$$

assuming $v_{1,\text{medium}} = v_{1,\bar{p}}$

$$v_{1, ext{excess}} = rac{v_{1,p} - v_{1,ar{p}}}{1 - N_{ar{p}}/N_p}$$

- BES-II: higher precision than BES-I
- ▶ v_1 slope of excess proton: $\sqrt{s_{_{
 m NN}}} > 11.5$ GeV scales with y/y_{beam} ; $\sqrt{s_{_{
 m NN}}} \le 11.5$ GeV deviate from scaling \rightarrow change in medium/collision dynamics
- ▶ Mean field models predict the trend, but over-predict the measurements at lower $\sqrt{s_{\rm NN}}$ → data can constrain EoS

v_2 at fixed target experiments – breaking of NCQ scaling

- ▶ partonic collectivity \rightarrow NCQ scaling: number of constituent quark scaling \rightarrow hadrons follow the same scaling $\frac{v_2}{n_q}$ vs. $\frac{m_T m_0}{n_q}$ or $\frac{p_T}{n_q}$
- ▶ Gradual breaking of NCQ scaling $\sqrt{s_{_{\rm NN}}} \le 3.2$ GeV → shadowing effect + hadronic interaction

Outline

Λ global polarization

Non-central collision \rightarrow global angular momentum \rightarrow spin-orbit coupling \rightarrow global polarization

- ▶ Updates from BES-II $\sqrt{s_{_{\rm NN}}} = 7.7 17.3$ GeV with high precision (improved statistics & event plane resolution)
- Λ , $\overline{\Lambda}$ opposite magnetic moment $\rightarrow \vec{B}$ field enhances $P_{\overline{\Lambda}}$ and reduce $P_{\Lambda} \rightarrow$ splitting expected
- ▶ No splitting is observed within uncertainties between Λ and $\overline{\Lambda}$ global polarization \rightarrow late-stage magnetic field $B < 9.4 \times 10^{12}$ T (19.6GeV); $B < 1.4 \times 10^{13}$ T (27GeV) [STAR, PRC108(2023)014910]

$$\begin{split} P_{H} &= \frac{8}{\pi \alpha_{H}} \langle \sin(\Psi_{\rm RP} - \phi_{p}^{*}) \rangle \\ H: \text{ hyperons, } \Lambda \text{ or } \bar{\Lambda} \text{ here} \\ \alpha_{H}: \text{ decay parameter} \\ \phi_{p}^{*}: \text{ decay daughter } p \ (\bar{p}) \\ \text{ azimuth in } \Lambda \ (\bar{\Lambda}) \text{ rest frame} \end{split}$$

Λ local polarization

[STAR, PRL 131(2023)202301]

$$\begin{split} P_z &= \frac{\langle \cos \theta_p^* \rangle}{a_H \langle \cos^2 \theta_p^* \rangle} \\ \theta_p^*: \quad \text{decay daughter } p \ (\bar{p}) \text{ polar angle} \\ \text{in } \Lambda \ (\bar{\Lambda}) \text{ rest frame} \\ \text{w.r.t. beam direction} \end{split}$$

 $\blacktriangleright~\Lambda$ polarization along beam has dependence on azimuth w.r.t. EP

- \rightarrow vorticity pattern expected due to elliptic and triangular anisotropic flow
- \rightarrow local polarization w.r.t. both Ψ_2 , Ψ_3 observed with similar magnitudes
- ▶ comparison with models → measurements provide constraints on the thermal vorticity and shear-induced contributions to hyperon polarization

Outline

CME signal extraction: SP/PP comparison method

[Voloshin, PRC 98(2018)054911]

- The azimuthal correlator Δγ is widely used, with backgrounds like resonance decays coupled with flow γ_{os} = ⟨cos(φ[±]₁ + φ[∓]₂ − 2Ψ_{RP})⟩, γ_{os} = ⟨cos(φ[±]₁ + φ[∓]₂ − 2Ψ_{RP})⟩, Δγ = γ_{os} − γ_{ss}
- ▶ Both SP (spectator plane) and PP (participant plane) measure signal and flow-coupled background, but with different responses → SP, PP comparison → separate the signal and background
- The measurements shows positive f_{CME} with $2 \sim 3\sigma$ significance.

The isobar collision: CME upper limit

- ▶ initial expectation: ${}^{96}_{44}$ Ru, ${}^{96}_{40}$ Zr: same A, different $Z \rightarrow$ same background, different signal
 - ▶ Ru+Ru: proton number $\uparrow \rightarrow$ magnetic field $\uparrow \rightarrow$ CME signal $\uparrow \rightarrow \Delta \gamma / v_2 \uparrow \rightarrow$ Ru/Zr > 1

- STAR blind analysis [STAR, PRC 105(2022)014901] → isobar ratios Ru/Zr < 1, opposite to the initial expectation ← multiplicity diff. ← nuclear structure [Xu et al., PRL121(2018)022301].</p>
- ▶ Nonflow background baseline estimate \rightarrow CME upper limit 10% (95% CL). Forced match method (N, v_2 , EP res.) [STAR, QM2023] \rightarrow consistent with unity

Summary and Outlook

Summary

This talk focuses on selected recent studies on flow, vorticity, and chirality, amid numerous other key findings

- Observed v₁ splitting between particles and antiparticles. Physics interpretations: EM effects? Baryon inhomogeneity?
- Proton v₁ measurements and excess proton v₁ offers constraints to EoS of the matter produced
- \blacktriangleright v_2 NCQ scaling breaks at low energy
- Λ and Λ polarization consistent within uncertainties. Non-zero local polarization relative to 2nd and 3rd order event planes
- \blacktriangleright CME searches with SP/PP comparison and isobar comparison \rightarrow currently no firm conclusion on CME \rightarrow looking forward to new data

Outlook

- Fully upgraded STAR detector (BES-II and forward upgrades completed) → better resolution, wider acceptance
- ▶ Unprecedented high statistics Au+Au/p+p at $\sqrt{s_{_{\rm NN}}} = 200$ GeV in 2023-2025 → anticipated great improvement of precision

[STAR, Beam Use Request, Runs 24-25] [Hot QCD White Paper, arXiv:2303.17254] [The Present and Future of QCD, NPA1047(2024)122874]