Overview of STAR measurements on flow, chirality, and vorticity – XIII International Conference on New Frontiers in Physics, ICNFP2024

Yicheng Feng (for the STAR Collaboration)

PURDUE VERSITY.

Supported in part by theU.S. DEPARTMENT OF Office of Science

Purdue University

September 3, 2024

Physics of interest

▶ Quark Gluon Plasma (QGP)

produced in high energy heavy-ion collisions (HIC) QGP: deconfined quarks and gluons over extended volume HIC: nuclei (e.g., Au) collide at nearly the speed of light

▶ Collective motion *→* flow

QGP phase transition, equation of state of medium produced, nuclei shape, ...

▶ Global angular momentum (vorticity) *→* spin polarization

rotation of QCD matter, spin degree of freedom

▶ QCD vacuum fluctuation *→* chirality anomaly $+$ Magnetic field \rightarrow chiral magnetic effect (CME) *P* and *CP* violation in strong interaction

Some of the recent experiments at STAR

Beam Energy Scan (BES):

Au+Au collisions at different energies $(\sqrt{s_{_{NN}}})$

- ▶ BES-II (2018-2021): large increase of statistics
- ▶ FXT (2018-2021): fixed target experiments, lower collision energy
- ▶ Study the phases of QCD matter and search for QCD critical point, varying baryon chemical potential (*µB*)

Isobar collisions (2018): $^{96}_{44}$ Ru $+~^{96}_{44}$ Ru vs $^{96}_{40}$ Zr $+~^{96}_{40}$ Zr

- Different proton numbers $→$ different magnetic field Same nucleon number *→* similar QCD background
- Complication: nuclear structure difference
- Comparison to search for the chiral magnetic effect (CME)

STAR detector

Outline

∆*v*¹ combination dependence on charge and strangeness

- Assume coalescence hadronization; EM effect \rightarrow splitting $\propto \Delta q$.
- ▶ qualitatively consistent with Hall effect (Hall**>**Faraday+Coulomb) in 10-40% centrality

Other possibility: baryon inhomogeneities? [Parida, Chatterjee, arXiv:2305.08806] simultaneous fit on Δq and ΔS ? [Nayak, Shi, Lin, PLB849(2024)138479]

*v*¹ splitting and possible EM effect

Other possibility: baryon inhomogeneities? [Parida, Chatterjee, arXiv:2305.08806] *→* Λ, *p*: similar splitting 7 / 16

Excess proton flow v_1 in BES-II

Proton directed flow is predicted to be a sensitive probe of the EoS of the produced medium.

$$
N_p v_{1,p} = N_p v_{1,\text{medium}} + (N_p - N_{\bar{p}}) v_{1,\text{excess}}
$$

assuming $v_{1, \text{medium}} = v_{1, \bar{p}}$

$$
v_{1,\mathrm{excess}} = \frac{v_{1,p}-v_{1,\bar{p}}}{1-N_{\bar{p}}/N_p}
$$

- ▶ BES-II: higher precision than BES-I
- \blacktriangleright *v*₁ slope of excess proton: $\sqrt{s_{NN}}$ > 11.5 GeV scales with *y/y*beam; $\sqrt{s_{_{NN}}}$ ≤ 11.5 GeV deviate from scaling *→* change in medium/collision dynamics
- ▶ Mean field models predict the trend, but over-predict the measurements at lower $\sqrt{s_{\scriptscriptstyle NN}}$ \rightarrow data can constrain EoS $8/16$

v_2 at fixed target experiments – breaking of NCQ scaling

▶ partonic collectivity *→* NCQ scaling: number of constituent quark scaling *→* hadrons follow the same scaling $\frac{v_2}{n_q}$ vs. $\frac{m_T - m_0}{n_q}$ or $\frac{p_T}{n_q}$

▶ Gradual breaking of NCQ scaling $\sqrt{s_{NN}} \leq 3.2$ GeV \rightarrow shadowing effect + hadronic interaction

Outline

- 2. Vorticity
- 3. Chirality

Λ global polarization

Non-central collision *→* global angular momentum *→* spin-orbit coupling *→* global polarization

- ▶ Updates from BES-II $\sqrt{s_{NN}}$ = 7.7 17.3 GeV with high precision (improved statistics & event plane resolution)
- $\blacktriangleright \Lambda$, $\bar{\Lambda}$ opposite magnetic moment $\rightarrow \vec{B}$ field enhances $P_{\overline{\Lambda}}$ and reduce $P_{\Lambda} \rightarrow$ splitting expected
- No splitting is observed within uncertainties between Λ and $\bar{\Lambda}$ global polarization \rightarrow late-stage magnetic field $B < 9.4 \times 10^{12}$ T (19.6GeV); *B <* 1*.*4 *×* 10¹³ T (27GeV) [STAR, PRC108(2023)014910]

 $P_H = \frac{8}{\pi \alpha_H} \langle \sin(\Psi_{RP} - \phi_p^*) \rangle$ *H*: hyperons, Λ or $\overline{\Lambda}$ here *αH*: decay parameter ϕ^*_p : decay daughter p (\bar{p}) azimuth in Λ ($\bar{\Lambda}$) rest frame

Λ local polarization

[STAR, PRL 131(2023)202301]

 $P_z =$ *⟨*cos *θ ∗ p ⟩* $a_H \langle \cos^2 \theta_p^*$ *p ⟩ θ ∗* $\overset{\upsilon_p}{\operatorname{per}}$ and $\overset{\upsilon_p}{\operatorname{per}}$ and p (\bar{p}) polar angle decay daughin Λ ($\bar{\Lambda}$) rest frame w.r.t. beam direction

 \triangleright A polarization along beam has dependence on azimuth w.r.t. EP

- *→* vorticity pattern expected due to elliptic and triangular anisotropic flow
- \rightarrow local polarization w.r.t. both Ψ_2 , Ψ_3 observed with similar magnitudes
- ▶ comparison with models *→* measurements provide constraints on the thermal vorticity and shear-induced contributions to hyperon polarization

Outline

CME signal extraction: SP/PP comparison method

[Voloshin, PRC 98(2018)054911]

- **►** The azimuthal correlator $\Delta\gamma$ is widely used, with backgrounds like resonance decays coupled with flow $\gamma_{\text{os}} = \langle \cos(\phi_1^{\pm} + \phi_2^{\mp} - 2\Psi_{\text{RP}}) \rangle$, $\gamma_{\text{os}} = \langle \cos(\phi_1^{\pm} + \phi_2^{\mp} - 2\Psi_{\text{RP}}) \rangle$, $\Delta \gamma = \gamma_{\text{os}} - \gamma_{\text{ss}}$
- ▶ Both SP (spectator plane) and PP (participant plane) measure signal and flow-coupled background, but with different responses *→* SP, PP comparison *→* separate the signal and background
- The measurements shows positive f_{CME} with $2 \sim 3\sigma$ significance. 14/16

The isobar collision: CME upper limit

- ▶ **initial expectation:** $^{96}_{44}$ Ru, $^{96}_{40}$ Zr: same *A*, different *Z* → same background, different signal
	- $Ru+Ru:$ proton number $\uparrow \rightarrow$ magnetic field $\uparrow \rightarrow$ CME signal $\uparrow \rightarrow \Delta \gamma/v_2 \uparrow$ \rightarrow Ru/Zr > 1

- **STAR blind analysis** [STAR, PRC 105(2022)014901] \rightarrow isobar ratios Ru/Zr < 1, opposite to the initial expectation *←* multiplicity diff. *←* nuclear structure [Xu *et al.*, PRL121(2018)022301] .
- ▶ Nonflow background baseline estimate *→* CME upper limit 10% (95% CL). Forced match method $(N, v_2, \text{EP} \text{ res.})$ [STAR, QM2023] \rightarrow consistent with unity [STAR, PRR6(2024)L032005, PRC110(2024)014905, QM2023]

Summary and Outlook

Summary

This talk focuses on selected recent studies on flow, vorticity, and chirality,

amid numerous other key findings

- \triangleright Observed v_1 splitting between particles and antiparticles. Physics interpretations: EM effects? Baryon inhomogeneity?
- \blacktriangleright Proton v_1 measurements and excess proton v_1 offers constraints to EoS of the matter produced
- \triangleright v_2 NCQ scaling breaks at low energy
- Λ and $\bar{\Lambda}$ polarization consistent within uncertainties. Non-zero local polarization relative to 2^{nd} and 3^{rd} order event planes
- ▶ CME searches with SP/PP comparison and isobar comparison *→* currently no firm conclusion on CME *→* looking forward to new data

Outlook

- ▶ Fully upgraded STAR detector (BES-II and forward upgrades completed) *→* better resolution, wider acceptance
- ▶ Unprecedented high statistics Au+Au/p+p at $\sqrt{s_{NN}} = 200$ GeV in 2023-2025 *→* anticipated great improvement of precision

[STAR, Beam Use Request, Runs 24-25] [Hot QCD White Paper, arXiv:2303.17254] [The Present and Future of QCD, NPA1047(2024)122874]