

<u>electroweak</u>

supersymmetry with compressed spectra

Hammad Rasheed

On the behalf of the ATLAS Collaboration

The Minimal Supersymmetric Standard Model

Electroweakinos

(superpartners of SM Higgs and EWK gauge bosons) mix into charginos (C1, C2) and neutralinos (N1-N4). SUSY has a complex EWK sector.

Lightest supersymmetric particle

is a viable dark matter candidate

Short keys in slides

 $\textbf{MET} \rightarrow \textbf{Missing}$ Transverse Energy

 $\textbf{pT} \rightarrow \text{Transverse Momentum}$

Hammad Rasheed

ICNFP 2024

Why compressed Higgsinos?

Importance of Higgsinos:

• The **µ parameter** (controls Higgsino masses) must remain small to to avoid excessive fine-tuning

Compressed Spectrum:

- In Higgsino-dominated cases, the mass splitting between N1, C1, and N2 is small, creating a compressed spectrum
- Small mass splitting means weak signals, making detection challenging
- Detection heavily relies on identifying low pT pions or leptons in the final state

Hammad Rasheed

Higgsinos LSP with Soft Leptons

Phys. Rev. D 101, 052005 (2020)

Higgsinos LSP with Soft Leptons

- m_{ee} endpoint set by Δm(N2, N1)
- Higgsino-LSP -> Red curve
- Populated regions at low m_{ee} values confirm the compressed mass spectrum signature

- N2 decay via off-shell Z boson produces low pT leptons
- Dilepton mass $(\mathbf{m}_{\rho\rho})$ forms a peak at low values
 - A characteristic signature in compressed Higgsino searches

Hammad Rasheed

ICNFP 2024

Analysis Strategy

ين م لا Higgsinos, $m(\tilde{\chi})$ = 100 GeV ATLAS √s = 13 TeV **R**_{ISR}: Ratio of **MET** to **pT** of the **Initial State** otal background $\Delta m = 2 \text{ GeV}$ = 5 GeV $\Delta m = 10 \text{ GeV}$ Radiation (ISR) system 0.95 R_{ISR} variable is sensitive to the mass 0.9 splitting (compressed SUSY events) 0.85 R_{ISR} is higher in signal than background 0.8 10 0 12 2 14 16 *m*_" [GeV]

Hammad Rasheed

Analysis Strategy

- Cut on \mathbf{R}_{ISR} and fit the $\mathbf{m}_{\ell\ell}$ variable
- Fit is performed in bins of m_{ee} distribution
- Separate signal regions are defined based on lepton flavor
 - Estimate backgrounds with MC

simulation (normalized to data) and the

Fake Factor method (JINST 18 (2023)

<u>T11004</u>)

Hammad Rasheed

Results and Interpretation

Exclusion limits set the mass N2 at 193 GeV, with a 9.3 GeV mass splitting from N1 Higgsino-LSP scenarios exclude mass splittings from 2.4 GeV, with sensitivity up to 50 GeV, surpassing LEP limits

Higgsino-LSP region

Data matches SM predictions No significant excess or evidence of new physics Limits are set based on Simplified Models

Hammad Rasheed

ICNFP 2024

Higgsino LSP with Displaced Track

Phys. Rev. Lett. 132 (2024) 221801

Higgsinos LSP with Displaced Track

Mass Splitting:

 With ∆m(C1, N1) ≈ 0.3 – 1 GeV, the chargino is nearly degenerate with the neutralino, producing low pT pions

Chargino Travel Distance:

 Chargino travels ~0.1 to 1 mm from the proton collision vertex

Track Inside Inner Detector:

• This distance allows the chargino to decay in the detector, leaving a displaced track

Discrimination Using S(d_0):

• S(d0), the ratio of transverse impact parameter to its resolution, is key discriminator for identifying this decay

Hammad Rasheed

ICNFP 2024

Backgrounds and Validation Regions (VRs)

Most Impactful Standard Model Backgrounds

- QCD Tracks:
 - Originates from W/Z + jets events where the signal candidate tracks originate from long lived hadrons decays, pileup jets
 - Estimated via data-driven ABCD method.
- Tau Tracks:
 - Originates from $W(\rightarrow \tau \nu)$ + jets events where a pion or lepton from a low pT τ -lepton decay is tagged as the signal candidate track
 - Estimated via MC simulation, normalized to data

Validation Regions:

- Defined with similar backgrounds as the SRs in addition with different lepton or photon content
- A shifted MET range (300 GeV < MET < 400 GeV) increases data yield and reduces signal contamination

11/17

Results and Interpretation

- Exclusion limits for mass splittings:
 - 0.3 GeV < Δm(C1, N1) < 0.9 GeV
- Search sensitivity peaks at Δm(C1, N1) = 0.6 GeV, excluding m(C1) up to ~170 GeV

Data matches SM predictions, showing no significant

excess or evidence of new physics

Limits set on Higgsino Simplified Models

Hammad Rasheed

ICNFP 2024

ATLAS Run 2 searches for electroweak SUSY particles interpreted within 19D phenomenological Minimal Supersymmetric Standard Model

JHEP 2024 (2024) 106

Electroweak pMSSM Scan

- **Simplified models** do not capture the full complexity of SUSY phenomenology
- SUSY parameters reduced from 100 in MSSM to 19 in pMSSM, assuming CP-conservation, RPC, and minimal flavour violation
- Reinterpreting electroweak ATLAS Run 2 SUSY searches in pMSSM explores electroweakinos, assuming other sparticles are decoupled
- LSP assumed as N1
- This talk only focuses on Higgsino LSP and compressed scenarios results

LSP MASS DISTRIBUTION

For m(N1) < 200 GeV: Less than 20% of Higgsino-like LSP models are excluded by ATLAS

Hammad Rasheed

ICNFP 2024

EWkinos Exclusion in Compressed Region

ATLAS shows sensitivity to low Ewkino masses in both $\Delta m(C1,N1)$ vs. m(N1) and $\Delta m(N2,N1)$ vs m(N2) plane

Exclusion fractions shown with non-DM constraints: Precision EWK, Flavor measurements

Highest exclusion is seen for $\Delta m(C1,N1) \approx 0.1 - 0.2 \text{ GeV}$

the sensitive region for disappearing track analysis

In many bins within the simplified model contours,

less than 100% exclusion is observed due to pMSSM models' smaller branching fractions

Hammad Rasheed

ICNFP 2024

Benchmark Models with Higgsino-like LSP

- Models satisfy all constraints and are not excluded
- N3 and C2 are under 1 TeV with large mass splittings from other electroweakinos
- Mass spectrum remains within the published compressed ATLAS simplified model contours
- BR(N2 \rightarrow N1 $\ell^+\ell^-$), smaller in pMSSM models
 - N2 also has a radiative decay mode: N2 \rightarrow N1 + γ , typically suppressed but favoured at small mass splittings
- In some benchmark models, enhanced radiative decay, heavier electroweakinos and their decay products, interesting for future searches

Hammad Rasheed

ICNFP 2024

Summary and Outlook

- Current Status:
 - EWK SUSY searches at the LHC are crucial, particularly in challenging compressed scenarios, necessitating specialized analysis strategies
 - **Higgsino searches** are motivated by the need to address fine-tuning in the Higgs sector
 - ATLAS shows data consistent with SM predictions, though SM doesn't explain everything
- Key Insights:
 - **Challenging** final state **signatures** (soft pions) are key, especially in **compressed** Higgsino **scenarios**
 - Exclusion sensitivity peaks at $\Delta m(C1, N1) = 0.6 \text{ GeV}$, excluding m(C1) up to 170 GeV based on

Displaced track analysis

- pMSSM paper provides an excellent overview of EWK SUSY Run 2 searches
- Future Directions:
 - Run 3 offers exciting prospects (with more data) to continue the hunt for SUSY signals as well as with new ideas and techniques
 - Benchmark models from pMSSM results further motivate continued exploration

Hammad Rasheed

Run: 349309 Event: 1342904905 2018-05-01 16:21:51 CEST

BACKUP SLIDES

HIggsino LSP with Soft Leptons

-				Preselection requirements				
Variable			2ℓ	2ℓ			$1\ell 1T$	
Number of leptons (tracks) Lepton p_T [GeV] $\Delta R_{\ell\ell}$ Lepton (track) charge and flavor Lepton (track) invariant mass [GeV] J/ψ invariant mass [GeV] $m_{\tau\tau}$ [GeV] E_T^{miss} [GeV] Number of jets Number of <i>b</i> -tagged jets Leading jet p_T [GeV] min($\Delta \phi$ (any jet, \mathbf{p}_T^{miss})) $\Delta \phi(j_1, \mathbf{p}_T^{miss})^{\dagger}$			$ \begin{array}{l} = 2 \ \text{lepto} \\ p_{\mathrm{T}}^{\ell_1} > 5 \\ \Delta R_{ee} > 1 \\ e^+ e^- \ \text{or} \\ j \\ \end{array} \\ \begin{array}{l} 2 \\ 2 \\ 2 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0$	$= 2 \text{ leptons} \\ p_{T}^{\ell_{1}} > 5 \\ \Delta R_{ee} > 0.30, \Delta R_{\mu\mu} > 0.05, \Delta R_{e\mu} > 0.2 \\ e^{\pm}e^{\mp} \text{ or } \mu^{\pm}\mu^{\mp} \\ 3 < m_{ee} < 60, 1 < m_{\mu\mu} < 60 \\ \text{veto } 3 < m_{\ell\ell} < 3.2 \\ < 0 \text{ or } > 160 \\ > 120 \\ \geq 1 \\ = 0 \\ \geq 100 \\ > 0.4 \\ \geq 2.0 \end{cases}$			= 1 lepton and \geq 1 track $p_T^{\ell} < 10$ $0.05 < \Delta R_{\ell track} < 1.5$ $e^{\pm}e^{\mp}$ or $\mu^{\pm}\mu^{\mp}$ $0.5 < m_{\ell track} < 5$ veto $3 < m_{\ell track} < 3.2$ no requirement ≥ 120 ≥ 1 no requirement ≥ 100 > 0.4 ≥ 2.0	
	01 1	-0.034		0		11		
00	Observed			0	4	11	4	
eq	Fitted SM events			0.11 ± 0.08	5.1 ± 1.6	7.3 ± 1.9	2.2 ± 0.9	
SR-E-me	Fake/nonprompt $t\bar{t}$, single top Diboson $Z(\rightarrow \tau\tau)$ +jets Others	Re	Fit sults	$\begin{array}{c} 0.000 \substack{+0.016\\ -0.000}\\ 0.00 \substack{+0.05\\ -0.00}\\ 0.10 \pm 0.05\\ 0.000 \substack{+0.028\\ -0.000}\\ 0.000 \substack{+0.012\\ -0.000}\\ \end{array}$	$\begin{array}{c} 3.8 \pm 1.3 \\ 0.00 \substack{+0.04 \\ -0.00} \\ 0.10 \pm 0.09 \\ 1.2 \pm 1.2 \\ - \end{array}$	$\begin{array}{c} 6.9 \pm 2.0 \\ 0.01 \substack{+0.06 \\ -0.01} \\ 0.28 \pm 0.26 \\ 0.1 \substack{+0.5 \\ -0.1} \\ -\end{array}$	$\begin{array}{c} 1.6 \pm 1.1 \\ 0.23 \substack{+0.25 \\ -0.23} \\ 0.02 \substack{+0.13 \\ -0.02} \\ 0.3 \substack{+0.6 \\ -0.3} \\ -\end{array}$	
μ	Observed	16	8	6	41	59	21	
SR-E-med μ_1	Fitted SM events	14.6 ± 2.9	6.9 ± 2.1	6.2 ± 1.9	34 ± 4	52 ± 6	18.5 ± 3.2	
	Fake/nonprompt $t\bar{t}$, single top Diboson $Z(\rightarrow \tau\tau)$ +jets Others	$7.9 \pm 3.2 \\ 0.01^{+0.06}_{-0.01} \\ 2.3 \pm 0.8 \\ 3.8 \pm 1.8 \\ 0.5 \pm 0.4$	$\begin{array}{c} 4.8 \pm 2.1 \\ 0.01 \substack{+0.06 \\ -0.01} \\ 0.9 \pm 0.4 \\ 1.2 \pm 0.5 \\ 0.000 \substack{+0.026 \\ -0.000} \end{array}$	$5.1 \pm 2.0 \\ 0.00^{+0.05}_{-0.00} \\ 0.73 \pm 0.24 \\ 0.3^{+0.6}_{-0.3} \\ 0.036 \pm 0.015$	$\begin{array}{c} 27 \pm 5 \\ 0.12 \substack{+0.13 \\ -0.12} \\ 1.9 \pm 0.7 \\ 4.9 \pm 1.6 \\ 0.019 \pm 0.017 \end{array}$	$44 \pm 6 \\ 0.24 \pm 0.08 \\ 0.87 \pm 0.26 \\ 6.1 \pm 2.1 \\ 0.9 \pm 0.6$	$18.2 \pm 3.2 \\ 0.14^{+0.19}_{-0.14} \\ 0.13 \pm 0.07 \\ 0.02^{+0.29}_{-0.02} \\ -$	

=

=

Backgrounds

Process	Matrix element	Parton shower	PDF set	Cross-section
V+jets	Sherpa	2.2.1	NNPDF 3.0 NNLO [84]	NNLO [85]
VV	Estima	ated via	NNPDF 3.0 NNLO	Generator NLO
Triboson	Sherpa	2.2.1	NNPDF 3.0 NNLO	Generator LO, NLO
h (ggF)	Powneg-Box ake	PACTOL	NLO CTEQ6L1 [86]	N ³ LO [87]
h (VBF)	Powheg-Box	186 The Part of th	NLO CTEQ6L1 [86]	NNLO + NLO [87]
h + W/Z	Pythia	8.186	NNPDF 2.3 LO [54]	NNLO + NLO [87]
$h + t\bar{t}$	MG5_aMC@NLO 2.2.3	Рутніа 8.210	NNPDF 2.3 LO	NLO [87]
tī	Powheg-Box	Рутніа 8.230	NNPDF 2.3 LO	NNLO+NNLL [88–92]
t (s-channel)	Powheg-Box	stimated	NNPDF 2.3 LO	NNLO+NNLL [93]
t (t-channel)	Powheg-Box	Рутніа 8.230	NNPDF 2.3 LO	NNLO+NNLL [77, 94]
t + W	Powheg-Box	via MC	NNPDF 2.3 LO	NNLO+NNLL [95]
t + Z	MG5_aMC@NLO 2.3.3	Рутніа 8.212	NNPDF 2.3 LO	NLO [53]
tīWW	MG5_aMC@NLO 2.2.2	Рутніа 8.186	NNPDF 2.3 LO	NLO [53]
$t\bar{t} + Z/W/\gamma^*$	MG5_aMC@NLO 2.3.3	Рутніа 8.210/8.212	NNPDF 2.3 LO	NLO [87]
t + WZ	MG5_aMC@NLO 2.3.3	Рутніа 8.212	NNPDF 2.3 LO	NLO [53]
$t + t\bar{t}$	MG5_aMC@NLO 2.2.2	Рутніа 8.186	NNPDF 2.3 LO	LO [53]
ttīt	MG5_aMC@NLO 2.2.2	Рутніа 8.186	NNPDF 2.3 LO	NLO [53]

Also an effective variable

	Electroweakino SR Requirements				
Variable	SR-E-low	SR-E-med	SR–E–high	SR–E–1 ℓ 1T	
$E_{\rm T}^{\rm miss}$ [GeV]	[120, 200]	[120, 200]	> 200	> 200	
$E_{\rm T}^{\rm miss}/H_{\rm T}^{\rm lep}$	< 10	> 10	-	> 30	
$\Delta \phi(\text{lep}, \mathbf{p}_{\text{T}}^{\text{miss}})$	-	- i	-	< 1.0	
Lepton or track $p_{\rm T}$ [GeV]	$p_{\rm T}^{\ell_2} > 5 + m_{\ell\ell}/4$	- 1	$p_{\rm T}^{\ell_2} > \min(10, 2 + m_{\ell\ell}/3)$	$p_{\rm T}^{\rm track} < 5$	
$M_{\rm T}^{\rm S}$ [GeV]	_	< 50	_	_	
$m_{\rm T}^{\ell_1}$ [GeV]	[10, 60]	I- !	< 60	-	
R _{ISR}	[0.8, 1.0]	<u>' '</u>	$[\max(0.85, 0.98 - 0.02 \times m_{\ell\ell}), \ 1.0]$	-	

Hammad Rasheed

ICNFP 2024

19

Displaced Track

Event level Selection:

- MET > 600 GeV
- Leading jet: pT > 250 GeV , $|\eta| < 2.5$
- min[Δφ(any jet, MET)] > 0.4
- No leptons or photons
- Njets ≤ 4

Track level Selection:

- $pT \in [2GeV, 5GeV], |\eta| < 1.5$
- |d0| < 10 mm, |z0sinθ| < 3 mm
- Δφ(track, MET) < 0.4
- No other track with pT > 1 GeV within $\Delta R=0.4$
- TightPrimary WP + N_{IBL} hits > 0
- S(d₀)>8

SRs binned in $S(d_0)$:

- **SR-low:** $S(d_0) \in [8,20]$
- **SR-high:** $S(d_0) > 20$

From Sala, Alessandro

Hammad Rasheed

pMSSM Scans

Run1 pMSSM Scans: <u>JHEP 10 (2015) 134</u>

Assumptions:

- No new sources of CP-violation (beyond CKM matrix)
- No flavour-changing neutral currents (FCNCs)
- Universality of 1st and 2nd generation sfermions
- R-parity conserved
- Lightest SUSY particle (LSP) is the lightest neutralino

Analysis Considered:

Analysis	Relevant simplified models targeted
FullHad [24]	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ, Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh, Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{-}$ via WW
1Lbb [15]	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh
2L0J [19]	Wino $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ via WW, slepton pairs
2L2J [25]	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ
3L [23]	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ, Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh, higgsino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \tilde{\chi}_1^0$
4L [22]	Higgsino GGM
Compressed [20]	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ, higgsino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \tilde{\chi}_1^0$
Disappearing-track [27]	Wino $ ilde{\chi}_1^+ ilde{\chi}_1^-$ and $ ilde{\chi}_1^\pm ilde{\chi}_1^0$

Hammad Rasheed

ICNFP 2024

21

pMSSM Scans

Constraints Considered:

Category	Constraint	Lower bound	Upper bound	Notes
Flavour	$\mathcal{B}(b \to s\gamma) = 3.11 \times 10^{-4}$		3.87×10^{-4}	2022 PDG average (2σ window) [58].
	$\mathcal{B}(B_s \to \mu\mu)$	1.87×10^{-9}	4.31×10^{-9}	Most recent LHCb result (2σ window) [59].
	$\mathcal{B}(B^+ \to \tau \nu)$	6.10×10^{-5}	1.57×10^{-4}	2022 PDG average (2σ window) [58].
Precision	Δρ	-0.0004	0.0018	Updated global electroweak fit by GFITTER group [60]
electroweak				(not including CDF W mass measurement [61]).
	$\Gamma_{inv}^{BSM}(Z)$	-	2 MeV	Beyond-the-Standard Model contributions to precision electroweak
				measurements on the Z-resonance from experiments at the SLC and
				LEP colliders [62].
	m(W)	80.347 GeV	80.407 GeV	2022 PDG result (excluding CDF W mass measurement [61]) [58]
				but with the 2σ window expanded by 6 MeV to allow for uncertainty
				due to the top-quark mass in the MSSM Higgs calculation [63].
DM	Relic density	-	0.12	Latest bound from Planck [64].
	$\sigma_{\text{Spin-independent}}$			Exclusion contour on direct detection of DM from the
	. 1			LZ Collaboration [65].
	$\sigma_{ m Spin-dependent}$			Exclusion contour on direct detection of DM from PICO-60 [66].

19 Parameters Ranges

Parameter	Min	Max	Note
$M_{\tilde{I}_{1}}(=M_{\tilde{I}_{2}})$	10 TeV	10 TeV	Left-handed slepton (first two gens.) mass
$M_{\tilde{e}_1} (= M_{\tilde{e}_2})$	10 TeV	10 TeV	Right-handed slepton (first two gens.) mass
$M_{\tilde{L}_2}$	10 TeV	10 TeV	Left-handed stau doublet mass
$M_{\tilde{e}_3}$	10 TeV	10 TeV	Right-handed stau mass
$M_{\tilde{Q}_1} (= M_{\tilde{Q}_2})$	10 TeV	10 TeV	Left-handed squark (first two gens.) mass
$M_{\tilde{u}_1} (= M_{\tilde{u}_2})$	10 TeV	10 TeV	Right-handed up-type squark (first two gens.) mass
$M_{\tilde{d}_1}$ (= $M_{\tilde{d}_2}$)	10 TeV	10 TeV	Right-handed down-type squark (first two gens.) mass
$M_{\tilde{O}_3}$	2 TeV	5 TeV	Left-handed squark (third gen.) mass
$M_{\tilde{u}_3}$	2 TeV	5 TeV	Right-handed top squark mass
$M_{\tilde{d}_3}$	2 TeV	5 TeV	Right-handed bottom squark mass
M_1	-2 TeV	2 TeV	Bino mass parameter
M_2	-2 TeV	2 TeV	Wino mass parameter
μ	-2 TeV	2 TeV	Bilinear Higgs boson mass parameter
<i>M</i> ₃	1 TeV	5 TeV	Gluino mass parameter
A_t	-8 TeV	8 TeV	Trilinear top coupling
A_b	-2 TeV	2 TeV	Trilinear bottom coupling
$A_{ au}$	-2 TeV	2 TeV	Trilinear τ -lepton coupling
M_A	0 TeV	5 TeV	Pseudoscalar Higgs boson mass
$\tan \beta$	1	60	Ratio of the Higgs vacuum expectation values

Hammad Rasheed

Electroweak Supersymmetry at LHC

- Smaller production cross sections at the LHC make electroweak SUSY searches particularly challenging
- These rare processes demand large amounts of data to uncover and achieve discovery

Hammad Rasheed

Fine Tuning Equation

Haber_Higgs_SUSY_Lecture

At this stage, we can already see the tension with naturalness, if the SUSY parameters are significantly larger than the scale of electroweak symmetry breaking. In this case, m_Z^2 will be the difference of two large numbers,

$$rac{1}{2}m_Z^2 = -|\mu|^2 + rac{m_1^2 - m_2^2 an^2 eta}{ an^2 eta - 1} \,,$$

requiring some fine-tuning of the SUSY parameters in order to produce the correct Z boson mass. In the literature, this tension is referred to as the *little hierarchy problem*.

In the above equation, μ , m_1^2 and m_2^2 are parameters defined at the electroweak scale. The question of fine-tuning should really be addressed to the fundamental SUSY-breaking parameters at some high energy scale, which ultimately determine the low-energy parameters appearing the above expression.

Hammad Rasheed

ATLAS SUSY Searches

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made

Hammad Rasheed

