

Exotic Searches at ATLAS

Gökhan ÜNEL on behalf of the ATLAS collaboration

New Frontiers in Physics - August 2024

Conference In Physics Inbari, Crete, Greece

Outline BSM searches

- The Standard Model (SM) currently provides the most accurate and comprehensive description of the subatomic world, yet it does not offer a complete explanation of all observed phenomena.
 - mH, mv, quark and lepton masses and mixings...
 - matter-antimatter asymmetry, "dark" content of the universe

- Several BSM theories, introducing new particles, are proposed to answer the open questions.
 - This talk is about exotic model searches with a focus on Dark Matter candidates mostly motivated by Higgs Branching results
- CERN-ATLAS Experiment presents results from 6 different searches using the full Run 2 data

•
$$\sqrt{s} = 13$$
TeV and $\mathscr{L} \approx 140$ fb⁻¹

Dark Photon γ_d pair production

Additional generic U(1) addition to SM

- Hidden Abelian Higgs Model (HAHM)
- Falkowski-Ruderman-Volansky-Zupan model (FRVZ)
 - f_d: hidden fermion, HLSP: stable hidden fermion
- γ_d mixing with γ and Z, coupling (kinetic mixing) parameter ϵ
 - $\epsilon \ge 10^{-5} 10^{-3}$: prompt γ_d decay
 - expected m(γ_d) <10 GeV
- SM decays:
 - $\gamma_d \to \ell^+ \ell^ \ell = e, \mu$
 - $\gamma_d \rightarrow \tau^+ \tau^-, q \bar{q}$ not considered.

 $m_{f_d} > m_{\text{HLSP}} + m_{\gamma_d}$

- electron channel and muon channel
 - e-channel important for $m(\gamma_d) < 2 m(\mu)$
- Search for Lepton Jets (LJs) collimated e/µs
 - LJ: highest pT lepton + same flavour lepton in $\Delta R = 0.4$
 - if another flavour in the cone, LJ is discarded.
 - eLJ: $|\eta| < 1.37$ & pT(trk[0]) > 5 GeV, at least 1e and 2 trks

• eLJ:
$$pT_{imb} = |\frac{pT(trk[0]) - pT(trk[1])}{pT(trk[0]) + pT(trk[1])}|$$
, small for resor
• eLJ: $R\phi = \frac{Eem_{3x3}}{Eem_{3x7}} < 0.96$

- SM background from vector bosons and off-shell γ s
- at least 2 LJs required to reduce SM bg.
- signal samples 17 MeV to 20 GeV
 - SM background: Z+jets, $t\bar{t}$

nance decays < 0.8

2eLJs, 2es in each 80> m(eLJ, eLJ) >100 bg from data w/ ABCD $N_{bg} = N_A = (N_B \times N_C)/N_D$ Regions

S

Analys

	Requirement / Region	SR	CR B	CR C	C
	Applied to both leading and farthest <i>e</i> LJ				
nel	Number of EM clusters in <i>e</i> LJ			1	
	eLJ mass imbalance			< 0.8	
Sha	Selection on event-level variables				
	$\Delta \phi(e \text{LJ}, e \text{LJ})$			> 2.5	
Φ	Number of jets ($p_{\rm T} > 40 {\rm GeV}$)			0	
O	$m(eLJ, eLJ) \notin [80, 100] \text{ GeV}$	yes	yes	yes	
ч —	Leading $eLJ p_T^{imb}$	< 0.8	< 0.8	> 0.8	>
	Farthest $eLJ R_{\phi}$	< 0.96	> 0.96	< 0.96	>

No significant excess of data over the expected background is observed.

- Improves Run 1 results by factor 50 due to better background estimation
- gray regions: limits are not extracted at regions on SM background resonances
- high mass: LJ reconstruction inefficient due to larger opening angle of the leptons
- for dark photon mass from 17 MeV to 20 GeV, limits set to B($H
 ightarrow \gamma_d \gamma_d$)
 - from 0.001% to 1% for the HAHM model and from 0.004% and 5% for the FRVZ model

Dark Photon γ_d single production

- Same motivation: additional U(1)_d
 - massless γ_d
- 3 channels used:

- ggF & VBF use H_{BSM}, VBF & ZH use H_{SM}
 - $400 \text{GeV} < m(H_{BSM}) < 3 \text{TeV}$

• isolated γ + MET + jets & leptons • VBF: 10SR (m_{ii} , m_T), 4CR (Wey, Wµy, Zvvy, e-y) beware of jVBF definition Channels Dominant Bgs: W(e/μ) γ j Z(vv) γ j Trigger • ZH: BDT for Si-Bg separation Photons additional selections $E_{\rm T}^{\gamma}$ [GeV] no b-tagged j₃ $E_{\rm T}^{\rm miss}$ [GeV] $m_{\ell\ell\gamma} > 100 \text{ GeV}$ Jets $\Delta \phi(E_T^{\text{miss}}, pT(\ell \ell \gamma)) > 2.4$ Leptons Dominant Bgs: Zj & Zγj • ggF: Disc. variables additional selections • $\Delta \phi(\gamma, E_T^{\text{miss}}) > 0.4$ $|\Delta z_{\nu}| < 250$ mm Dominant Bgs: real or fake γ s

jvbf: pT(j_0) >60 & pT(j_1) >50 & m(j_0j_1)>250 & $|\Delta\eta(j_0, j_1)| > 3$ & $|\Delta\phi(j_0, j_1)| < 2$

Main Event Selections

	VBF		ZH	ggF
	$E_{\mathrm{T}}^{\mathrm{miss}}$		Lepton(s)	Phot
	$= 1, C_{\gamma} > 0.4$		= 1	≥ 1
	$\in (15, \max(110, 0.733 \times n))$	$n_{\mathrm{T}}))$	> 25	> 15
	> 150		> 60	> 20
	2 or 3, $m_{j_1 j_2} > 250 \text{GeV}$, 4	$\Delta \eta_{j_1 j_2} > 3$	≤ 2	≤ 1
	$\eta_{j_1} \cdot \eta_{j_2} < 0, \Delta \phi_{j_1 j_2} < 2, C$	$C_{j_3} < 0.7$		
	$= 0 \ (e, \mu)$		= 2, SFOC	= 0
			$m_{\ell\ell} \in (76, 116) \text{ GeV}$	
S	m_{jj} and $m_{\rm T}$ in SR and 4 C	Rs	BDT score and 1 CR	$E_{\mathrm{T}}^{\mathrm{mis}}$
		$m_{\rm T}(\gamma, E_{\rm T}^{\rm mis})$	e^{s}) = $\sqrt{2E_{\rm T}^{\gamma}E_{\rm T}^{\rm miss}\left[1-c\right]}$	$os(\phi_{\gamma}$
			$C_i = \exp\left[-\frac{4}{(\eta_{j_1} - \eta_{j_2})^2}\left(\eta_i - \eta_{j_2}\right)^2\right]$	$\frac{\eta_{j_1} + \eta_{j_1}}{2}$

No significant excess of data over the expected background is observed.

- SM: B($H \rightarrow \gamma \gamma_d$)< 1.3% @95% CL
- BSM: for B($H_{BSM} \rightarrow \gamma \gamma_d$)=5%, m(H_{BSM}) <1500 GeV @95% CL

Theory σ from Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, (2017), arXiv: 1610.07922

Dark Matter

MET+V signature, hadron only channel

- Motivation from 4 distinct models (a) (b) • Axion-Like-Particles, 2HDM (+pseudoscalar) •^(C)Invisible Higgs decays, Simplified DM (WIMP)^(d)
- Signature: MET+V, V=Z,W
 - LHC DarkMatter Working Group recommended parameters and scans used
 - low pT: resolved jets, high pT: single jet w/ sub-structure
- Dominant Bgs
 - $Z_{\nu\nu}j W_{\tau\nu}j W_{e|\mu\nu}j$
 - $t\bar{t}$, dibosons

 $m(Z'_{V/A}) = 2m(\chi)$

- V boson hadronic reconstruction
 - using both merged & resolved jets
- No leptons in SR, only in CR
- Object based E_T^{miss} significance S
 - based on cov. matrix & corr. factors in Longitudinal & Transverse directions:

$$\mathcal{S} = \frac{E_{\mathrm{T}}^{\mathrm{miss}}}{\left[\sigma_L^2 (1 - \rho_{LT}^2)\right]^{1/2}}$$

Likelihood fit for bg estimation

Preselect

 $\Delta \phi(E_{\mathrm{T},\ell}^{\mathrm{miss}})$ $E_{\mathrm{T},\ell}^{\mathrm{miss}}$

Jets

V-tag

Trigger e μ S $m_{\ell\ell}$ [GeV $m_{\mu\nu}^{\rm T}$ [GeV $n_{b\in J}$

 n_b

	Merged						Resolved	1			
					leaning						
			F	Primary vertex	with at least ty	wo track	s with $p_{\rm T} > 50$	0 MeV			
ion		No $ au$ -leptons									
					$p_{T,\ell}^{\text{miss}} >$	30 GeV					
					$\min_i(\Delta \phi(E_T^m))$	$(iss_{\ell}, j_i))$	> 20°				
					$\Delta \phi(E_{T}^{\text{miss}}, \mu)$	$(p_{T\ell}^{\text{miss}}) <$	90°				
(V)		Z	$\Delta \phi(\boldsymbol{E}_{\mathbf{T},\boldsymbol{\ell}}^{\mathrm{miss}},J_1)$	> 120°	1,1		Δ	$\phi(\boldsymbol{E}_{\mathbf{T}}^{\text{miss}}, j_1 j_2)$	> 120°		
-			> 250 Ge	V				> 200 Ge	V		
			> 1J: < 4	4 <i>i</i>				> 2i: < 4	4 <i>i</i>		
			$p_{\pi}^{J_1} > 2000$	GeV		$n^{j_1} > 45 \text{GeV}$					
		<i>b</i> -tagg	ed track jet ve	to outside J_1		$\sum_{i} p_{T}^{j_{i}} \ge 120 (150) \text{ GeV for } 2j (\ge 3)$					
		Uich n		d aubstructure			$(-140^{\circ}, \Lambda)$	$\mathbf{D}(\mathbf{i}, \mathbf{i}) < 1$			
	High purity: mass and substructure						$\Delta \varphi(f_1, f_2) < 140$, $\Delta R(f_1, f_2) < 1$ $m_{\pm\pm} \in [65, 105] \text{ GeV}$				
		Low purity				$m_{j_1 j_2} \in [05, 105] \text{ Gev}$					
	SR	CR2mu	CR2el	CR1mu0b	CR1mu1b	SR	CR2mu	CR2el	CR1mu0b		
	$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{ m T}^{ m miss}$	Electron	$E_{ m T}^{ m miss}$	$E_{ m T}^{ m miss}$	$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\mathrm{T}}^{\mathrm{miss}}$	Electron	$E_{\mathrm{T}}^{\mathrm{miss}}$		
	0	0	2	0	0	0	0	2	0		
	0	2	0	1	1	0	2	0	1		
	>8	-	-	-	-	>8	-	-	-		
7]	-	∈ [66, 116]	∈ [66, 116]	-	-	-	∈ [66, 116]	∈ [66, 116]	-		
V]	-	-	-	∈ [30, 100]	∈ [30, 100]	-	-	-	€ [30, 100]		
	-	-	-	0	≥1	-	-	-	-		
	-	-	-	-	-	-	-	-	0		

No significant excess of data over the expected background is observed.

- SM: $B(H \rightarrow inv.) < 0.34 @95\% CL$
- \bullet
- \bullet

Gokhan Unel / UCI - ICNFP2024

Dark Mesons

decaying to t and b

- Motivation: Additional dark SU(2)
 - Strongly coupled Dark Matter, QCDlike dark sector
 - Stable dark scalar baryon as DM candidate
 - Stealth Dark Matter
 - $\sigma SU2_L > \sigma SU2_R$
- 2 new particles are considered
 - pseudoscalar triplet of dark pions, $\pi_{\rm D}$
 - vector triplet of dark mesons, ρ_D
- 3 free parameters
 - $m(\pi_D) m(\rho_D) N_{Dcolours} = 4$
 - 300< m (π_D) < 1200 GeV
 - $\eta_{\rm D} = m(\pi_{\rm D}) / m(\rho_{\rm D})$
 - $0.15 < \eta_D < 0.45$
 - $\rho_D \rightarrow 2 \pi_D$

Analysis strategy Gaugephobic decays are considered

Decays to SM particles

- High π_D mass: decay to t & b
- Low π_D mass: decay to b, c & τ
- Channels & Dominant Bgs
 - All hadronic: MultiJets
 - 1 lepton: $t\overline{t}$ HF, V+jets
- Reconstruction
 - dark pion as a large-*R* jet (R=1.2): LJ
 - Preselection based on Nj, NI,HT
 - All hadronic: 8 to 10 jets w/ >=4 b-taged
 - $m_{LJ0} > 300 \text{ GeV} m_{LJ1} > 250 \text{ GeV}$
 - $m_{bb} / pT_{bb} > 0.25 \& \Delta R(j, b_2) < 1.0$
 - 1 lepton: 5 to 7 jets w/ >=3 b-tagged
 - $\Delta R(\ell, b2) < 2.7$

angle between the lepton in the event and the second closest b-jet to this lepton

• $m_{bb,\min\Delta R} > 100 \text{ GeV}$

invariant mass of the two b-jets in the event that are closest to each other

Variable	All-hadronic channel	One-lepton chann		
N _{lep} (baseline)	0	1		
N _{lep} (signal)	-	1		
$N_{jets}(R = 0.4)$	≥ 6	≥ 5		
$N_{jets}(R = 1.2)$	≥ 2	-		
N _{b-jets}	≥ 3	≥ 3		
H_{T}	≥ 1150 GeV	$\geq 300 \text{ GeV}$		

- Dark pion exclusions
 - SU(2)R not sensitive due to low production cross-section
- 1-lepton channel fully covers all hadronic results
 - $\eta_D = 0.15 \text{ excl} : < 315 \text{ GeV}$
 - $\eta_D = 0.25 \text{ excl} : < 740 \text{ GeV}$
 - $\eta_D = 0.35 \text{ excl} : < 720 \text{ GeV}$
 - $\eta_D = 0.45 \text{ excl} : < 940 \text{ GeV}$

No significant excess of data over the expected background is observed.

Neutral LLPs

- Motivated by: SuSy, HiddenSector, AxionLike Particles, DarkMatter...
- Neutral, lifetime long enough to decay after a few cm to ~10 m \bullet
 - No signal in tracker, decays hadronically in or after EMcalo, small EM signal.
 - define CalR = E_h / E_{em}
- 3-Channel search: CalR +2j,
- Dominant Bgs: SM multiJets, Cosmic & Beam bg

CERN-EP-2024-181

CalR+W, CalR+Z W/Z+jets, $t\bar{t}$, singleTop

Selection

- per-jet NN to discriminate signal-like jets, BIB-like j SM multijets
- per-event ML selection signal-bg seperation
- SRs covering
 - Pair of LLPs decaying to jets
 - Single LLP + Z/W
 - Pair of LLPs + Z/W

Channels

- CalR+2J
 - 1 displaced+2trackless jets
 - ABCD method for bg estimation
 - HS models
- CalR+W -
 - only 1 lepton, >=1 trackless jet w/ pT>40GeV
 - BDT for 3 regions: ALP, $m\Phi < 200$, $m\Phi > 200$
- CalR+Z
 - 2 OS leptons, >=1 trackless jet w/ pT>40GeV
 - HS,ALP,Z_d : BDT for 2 regions: m_{Φ} <250, m_{Φ} >250

	Selection	CalR+2J
	Trigger	Satisfy CalRatio tr
	Number of clean jets	≥ 3
	$\sum \Delta R_{\min}$	> 0.5
	Trigger matching	At least one signal
ets &	Signal/BIB jet candidate time	-3 ns < t < 15 ns
	Signal/BIB jet candidate $\log_{10}(E_{\rm H}/E_{\rm EM})$	> -1.5
	Signal jet candidate η	∉ (1.45, 1.55)
	NN _{CalR+2J}	≥ 3
	Pagion A	$\sum \Delta R_{\min} \ge 0.71$
	Kegioli A	$NN_{CalR+2J} \ge 7.61$

SelectionCalR+W WALPCalR+W low- E_T CalRVector boson candidates0 Z, 1 W0 Z, 1 W0 Z, 1 W	R+W, 1 W
Vector boson candidates $0 Z, 1 W$ $0 Z, 1 W$ $0 Z, 1 W$, 1 V
	Thigh
BDT score $BDT_{CalR+W}^{ALP} > 0.82$ $BDT_{CalR+W}^{low-E_T} > 0.92$ BDT	
$j^{\text{sig1}\ell} \log_{10}(E_{\text{H}}/E_{\text{EM}}) > 1 > 1$ -	
$j^{\text{sig1}\ell} p_{\text{T}} > 70 \text{ GeV} > 60 \text{ GeV} > 10$	00 C
Lepton $p_{\rm T}$ – >40 GeV >60	0 Ge
$\Delta \phi(\text{lepton}, E_T^{\text{miss}}) < 1.5 \qquad -$	
$\frac{1}{1} BDT_{CalR+W}^{ALP} \ge 0.975 BDT_{CalR+W}^{low-E_T} \ge 0.985 BDT_{CalR+W}^{low-E_T} \ge 0.$	T_{Call}^{high}
$\sum \Delta R_{\min} \ge 1.1 \qquad \qquad \sum \Delta R_{\min} \ge 1.4 \qquad \qquad \sum \Delta R_{\min} \ge 1.4$	$R_{\rm min}$

Selection	$CalR+Z$ low- E_T	$CalR+Z$ high- E_T
Vector boson candidates	1 Z, 0 W	1 Z, 0 W
BDT score	$BDT_{CalR+Z}^{low-E_T}$ score > 0.6	$BDT_{CalR+Z}^{high-E_T}$ score
 $j^{\mathrm{sig1}\ell} \log_{10}(E_{\mathrm{H}}/E_{\mathrm{EM}})$	> 0.8	> 0.8
$j^{{ m sig1}\ell} \ p_{ m T}$	> 80 GeV	> 70 GeV
Lepton $p_{\rm T}$	> 70 GeV	> 60 GeV
Bagion A	$BDT_{CalR+Z}^{low-E_T}$ score > 0.99	$BDT_{CalR+Z}^{high-E_T}$ score
Kegion A	$\sum \Delta R_{\min} \ge 0.9$	$\sum \Delta R_{\min} \ge 1$

- **HS**
 - exclude $B(H \rightarrow 2S) > 1\%$ for LLP decay len. >30cm & <4.5m
- ALP +Z/W
 - exclude $\sigma_{\text{prod}} > 0.1 \text{ pb}$ for decay len. >10mm & <10m.
- $Z_d + Z$
 - exclude $\sigma_{\text{prod}} > 0.1 \text{ pb}$ for decay len. >20cm & <50m.

No significant excess of data over the expected background is observed. ^È010⁻ р ^o, 10⁻² 10⁻² 10⁻³ ZHS (m_a,m_s) **ATLAS** (125, 5) GeV, $c\tau_{\rm gen} = 0.10$ m – (125, 16) GeV, $c\tau_{\rm gen}$ = 0.30 m $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ ẳ 10[−] (125, 35) GeV, $c\tau_{\rm gen}$ = 2.50 m Observed (125, 55) GeV, $c\tau_{\text{gen}} = 3.50 \text{ m}$ --- Expected $\overline{\mathbf{O}}$ °26 32 10^{-3} 10^{2} **10**⁻¹ 10 see the yellow guidelines **10** _⋿ [dd] upper limit on $\sigma \times B$ [] -01 $\sigma \times B$ [] 1탇 WALP ATLAS 100 MeV, $c\tau_{\rm gen} = 0.003$ m - 1 GeV, $c\tau_{\rm gen} = 0.031$ m \sqrt{s} = 13 TeV, 140 fb⁻¹ - 10 GeV, $c\tau_{gen}$ = 0.309 m - 40 GeV, $c\tau_{gen}$ = 0.478 m 10⁻³ - Observed 95% --- Expected 10 10⁻² 10⁻¹

Vector Like Leptons

- Motivated by: 4321 model, $SU(4)xSU(3)'xSU(2)_{L}xU(1)'$
 - Lqs (U₁), 3 new gauge bosons, vector-like leptons (E/N) and quarks (U/D)
 - VLL: possible solution to hierarchy problem
- Earlier study by CMS 2.8σ excess m_{VLL}~600GeV (Phys. Lett. B 846 (2023) 137713)
- This study on E & N pair production.
 - Z', G' pushed to 100 5 TeV scale, irrelevant
 - m(U₁) ~ 3.5 TeV, coupling to 3rd gen. fermions only BR($U_1 \rightarrow b\tau^+$)= BR($U_1 \rightarrow t\overline{\nu_{\tau}}$)=0.5
 - $m(VLL) \sim [200, 1500]$ GeV free parameter
- Dominant Bgs: $t\bar{t}$, Z/W+jets

τ focused search

Event

- $0\ell + >= 1 \tau_{had} : SR \& CR$
 - different trigger "bucket"s to max. sensitivity
 - decision tree for

Ϋ́

- MET, SingleTauTrig., DiTauTrig., BJTrig.
- >= 1ℓ : Scale and Validation regions
- NN based classification
 - training with kinetic variables in 3 evt classes
 - NN score as discriminant Variable Event category

	$1\tau_{\text{had}} \ge 3b \text{ MST}$	$1\tau_{had} \ge 3b$ BJET	$\geq 2\tau_{had} \geq 3b \text{ MSDT}$	
n ^{trig}	\checkmark		\checkmark	
$p_{\mathrm{T.0}}^{ au_{\mathrm{had}}}$	\checkmark	\checkmark	\checkmark	
$p_{\mathrm{T},1}^{ au_{\mathrm{had}}}$			\checkmark	
$p_{\mathrm{T},2}^{ au_{\mathrm{had}}}$			\checkmark	
N _{jets}	\checkmark	\checkmark	\checkmark	
$N_{ au_{ ext{had}}}$			\checkmark	Signal Reg
$H_{\mathrm{T,jets}}$	\checkmark	\checkmark	\checkmark	
$E_{\mathrm{T}}^{\mathrm{miss}}$	\checkmark	\checkmark	\checkmark	Trigger bu
$m(\tau_{\mathrm{had},0},\tau_{\mathrm{had},1})$			\checkmark	Number of
$m(au_{ ext{had},0},b_0)$	\checkmark	\checkmark	\checkmark	$\tau_{\rm LM}$ identified
$m(b_0b_1, au_{ ext{had},0})$	\checkmark	\checkmark	\checkmark	Number of h to
$m(b_0b_1, E_{\rm T}^{\rm miss})$	\checkmark	\checkmark	\checkmark	Number of <i>D</i> -tag
$\Sigma b^{\mathrm{PCB}^{1}}$	\checkmark		\checkmark	Number of
$n^{ au_{ ext{had}} ext{ID}}$			\checkmark	NN score dist
$\min(\Delta \phi(E_{\rm T}^{\rm miss}, {\rm jets}))$	\checkmark	\checkmark	\checkmark	
$\min(\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, \tau_{\mathrm{had}}))$	\checkmark	\checkmark	\checkmark	
$N_{ m trk}^{ au_{ m had}}$	\checkmark	\checkmark	\checkmark	
$Q_{ au_{ m had,0}}$	\checkmark	\checkmark	\checkmark	
$\Sigma Q_{ au_{ m had}}$			\checkmark	

Signal Region	$1\tau_{had}3b$ MST	$ 1\tau_{\text{had}} \ge 4b \text{ M}$	$IST \mid 1 au_{ha}$	_d 3b BJ	$\mathrm{ET} \mid 1\tau_{\mathrm{h}}$	$_{\rm ad} \ge 4b \ \rm BJET$	≥	$2\tau_{\rm had} \ge 3b { m MS}$	DT
Trigger bucket	MET	$\Gamma \cup \mathbf{STT}$			BJET		MET	STT	DT
Number of τ_{had}			1				≥ 2	2 (OS)	or ≥ 3
r _{had} identification			Tight				\geq 1 Loose	\geq 1 Medium	$\geq 2 M_{\odot}$
ber of <i>b</i> -tags @77%	3	≥ 4		3		≥ 4		≥ 3	
Number of jets			≥ 4		·			≥ 3	
N score distribution	bution NN ($1\tau_{had}$ MST)			NN ($1\tau_{had}$ BJET)			NN ($\geq 2\tau_{had}$ MSDT)		

ledium

۲۲

No significant excess of data over the expected background is observed.

- Shape fit over NN score distribution
 - 5SR 7CR
- results incompatible w/ previous excess @600GeV
- Obs.(exp.) 910 (970) GeV @95% CL

Summary:

No significant excess of data over the expected background is observed.

Next:

More analyses are being finalized, More results soon...

Thank you for your attention

Measurements so far consistent with SM expectations, no evidence of new physics yet.

<u>CERN-EP-2024-183</u>	<u>arXiv:2407.09</u>
<u>CERN-EP-2024-128</u>	<u>arXiv:2406.01</u>
<u>CERN-EP-2024-181</u>	<u>arXiv:2407.09</u>
<u>CERN-EP-2024-152</u>	<u>arXiv:2406.01</u>
<u>CERN-EP-2024-150</u>	<u>arXiv:2405.20</u>
ATLAS-CONF-2024-008	

Links to Covered Analyses

