Measurements of Higgs boson production and decay rates with the ATLAS experiment

Eva Guilloton

University of Warwick/RAL

On behalf of the ATLAS collaboration ICNFP 2024

Event Display: ATLAS-PHOTO-2022-033

Overview of Higgs Production and Decay

- ttH offers direct measurement of top-Higgs coupling
- High improvement in flavor tagging: BDT -> DNN -> NN
 - => Major driver of sensitivity increases

bb

58.2%

Cross sections

Simplified Template Cross Sections (STXS)

Multiple non-overlapping phase space regions based on production mode of the Higgs boson, kinematics of the process

- Reduce theorical uncertainties
- Common framework for combination of orthogonal decay channels
- Defined in stages with increasing granularity
- Large **p**_T bins are sensitive for BSM physics search

Fiducial Cross Section

Cross sections measured in a phase space closely matching detector acceptance

- Avoids extrapolation of results into phase space out of acceptance
- More model-independent
- Often extrapolation to full phase space is required to combine analyses

Experimentally measured phase space

Interpretations

- BSM physics modify the Higgs couplings
- Deformations are model dependent, but which model?
- Two frameworks are used to parametrize possible BSM physics:

Kappa framework

Coupling of Higgs to p is modified by coupling modifier κ_p

- $\kappa_p^2 = \sigma_p / \sigma_p^{SM}$ for production
- $\kappa_p^2 = \Gamma_p / \Gamma_p^{SM}$ for decay
- $\kappa_p = 1 \Rightarrow SM$

For loop induced processes, sometimes use effective modifiers e.g. $\kappa_{Z\gamma}$

Assumes tree-level coupling structure of the SM

List of papers

Run 2

- VH, $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu + \ell \nu j j$ (ATLAS-CONF-2022-067) \rightarrow See Back Up
- VBF, $H \to WW^* \to e\nu\mu\nu$ (Phys. Rev. D 108 (2023) 072003)
- ggF, H \rightarrow WW* $\rightarrow e\nu\mu\nu$ (Eur. Phys. J. C 83 (2023) 774) \rightarrow See Back Up
- $H \rightarrow \gamma \gamma + c (arXiv:2407.15550 (hep-ex))$
- $H \rightarrow Z\gamma$ combination measurement ATLAS + CMS (<u>Phys. Rev. Lett. 132 (2024) 021803</u>)
- STXS + Fiducial, H → ττ (<u>arXiv:2407.16320</u>)
- VH, H → ττ (<u>Phys. Lett. B 855 (2024) 138817</u>)
- VBF VH, H → bb (<u>arXiv:2402.00426</u>)
- ttH, $H \rightarrow bb (arXiv:2407.10904) \rightarrow See Stephano Passaggio's talk$
- VH, $H \rightarrow bb + H \rightarrow cc$ (ATLAS-CONF-2024-010) \rightarrow See Stephano Passaggio's talk

Run 3

- $H \rightarrow \gamma \gamma$ (<u>ATLAS-CONF-2023-03</u>)
- $H \rightarrow ZZ \rightarrow 4l$ combined with $H \rightarrow \gamma\gamma$ (Eur. Phys. J. C 84 (2024) 78)

Overview of Recent Results using Run 2 data

-Obs. lin. - Obs. lin.+quad.

Exp. lin.+quad.

Exp. lin.

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

VBF, *H*→*WW**→*e*νµ*v*

- Data: 139 fb^{-1} , full ATLAS Run 2
- Measurements: Fiducial single + inclusive cross sections, SMEFT interpretation
- Final states with >= 2 jets are considered
- VBF production direct probe of Higgs coupling to W/Z bosons
- Simultaneous binned likelihood fit of MVA discriminants in kinematic regions

$H \rightarrow \gamma \gamma + c$

- Data: 139 fb^{-1} , full ATLAS Run 2
- Measurement: σ in full phase space
- Only accessible second-generation quark Yukawa coupling but difficult to probe:
 - This process has low yield in SM
 - It has an important hadronic background => use of the clean diphoton decay mode
- Fit: Approach based on Gaussian process regression to model the non-resonant diphoton background

First direct constraint on the **inclusive** *H* + *c* cross-section:

 $\sigma_{H+c}=5.2\pm3.0\,pb$

$$(\sigma_{SM} = 2.9 \ pb)$$

$H \rightarrow Z\gamma$ combination measurement ATLAS + CMS

- Data: 140 fb^{-1} for each experiment, full ATLAS + CMS Run 2
- Measurement: Combined analysis of the searches performed by ATLAS and CMS, σ in full phase space
- Decay occurs via loop diagram => sensitive to several BSM scenarios that would lead to an increase of the BR
- Final state: Z decays into electron or muon pairs

$$BR(H \rightarrow Z\gamma)_{SM} = (1.5 \pm 0.1) \times 10^{-3}$$

In agreement with SM predictions within 1.9σ

First evidence of H→Zγ!

STXS + Fiducial, H→ττ

- Data: 140 fb^{-1} , Full ATLAS Run 2
- Measurements: σ in full phase space in STXS framework, unfolded fiducial differential σ in VBF phase space, SMEFT interpretations
- STXS: Categorized in p_T^H , n_{Jets} , m_{jj} regions

 $\mu_{VBF} = 0.93^{+0.17}_{-0.15}$

CP-odd effective coupling

- Fiducial: Binned as function of observables sensitive to SMEFT effects e.g. $\Delta \phi_{jj}^{\rm signed}$
- σ measurement is in good agreement with the SM
- Variables used to unfolded the mass distribution are sensible to Wilson coefficients

-0.31 < $c_{H\tilde{w}}$ < 0.88 at 95% CL => Best constraint so far!

VΗ, Η→ττ

- Data: 140 fb^{-1} , full ATLAS Run 2
- Measurements: σ in full phase space
- Channel: At least 1 τ -lepton decaying hadronically + Z $\rightarrow \ell \ell$ and W $\rightarrow \ell \nu$
- Fit to a NN classifiers score distribution + mass-based analysis for crosschecking

Measurement consistent with SM

=> Limitation by the data sample size =>Improvement to see with Run 3

VBF VH, H→bb

- Data: 140 fb^{-1} , full ATLAS Run 2
- Measurements: σ in full phase space, kappa framework
- Goal: Measure the relative sign of H couplings to W and Z : $\lambda_{wz} = \kappa_W / \kappa_z$
 - $\lambda_{wz} \neq 1 \rightarrow \text{BSM}$
- Final states: $H \rightarrow bb$ and $Z \rightarrow \ell \ell$ and $W \rightarrow \ell \nu$
- Two separate analyses:
 - Negative λ_{wz} : works with BSM scenari*i*

• Positive λ_{wz} : works with SM-like scenario

Observed (expected) upper limit on σ is 9.0 (8.7) times the SM value

Measurements consistent with the Standard Model

Overview of Recent Results using Run 3 data

- Data: 31.4 *f b*⁻¹ @13.6 TeV (H→γγ)
- Measurement: Fiducial σ , shape analysis using $m_{\gamma\gamma}$ distribution
- Measurement in fiducial phase space and extrapolation to full phase space yielding

Good agreement with the SM

Η→γγ

$H \rightarrow ZZ \rightarrow 4l$ combined with $H \rightarrow \gamma \gamma$

- Data: 31.4 fb^{-1} @13.6 TeV (H $\rightarrow\gamma\gamma$) & 29.0 fb^{-1} @13.6 TeV (H \rightarrow ZZ \rightarrow 4l)
- Measurement: Full phase space σ + fiducial & full phase space σ in each channel
- Each channel measured in fiducial phase space and extrapolated to full phase space for combination

Good agreement with the SM at unprecedent COM energy

Conclusion

Run 2

- Differential and inclusive cross sections from recent measurements are presented in the ATLAS experiment in STXS, full and fiducial phase spaces
- Combined measurements are interpreted in the SMEFT and kappa frameworks
- Improved precision compared to Run-1 due to increased statistics and improved analysis methods, entering precision measurements era

Run 3

- First analyses at 13.6 TeV have been published
- Many more to come in the next years!
- All results are consistent with the Standard Model
- Dataset of LHC is expected to increase by a factor of 20 by 2040

Thank you!

gg**F, H**→WW* →eνµν

- Data: 139 fb^{-1} , full ATLAS Run 2
- Measurements: Fiducial single + double differential σ
- Final states with ≤ 1 jets are considered
- Fit is performed to m_T in each bin of each observable which sensitive to higher-order corrections (e.g. nJets), PDF (e.g. y_H), Higgs couplings in production (e.g. p_T^H) and decay (e.g. m_{ll})

$$m_T = \sqrt{\left(E_T^{ll} + E_T^{miss}\right)^2 - \left|\boldsymbol{p}_T^{ll} + \boldsymbol{E}_T^{miss}\right|^2}$$

Dominant sources of uncertainty:

- Jet, muon reconstruction
- t, WW backgrounds
- Difficulty in modelling Z/γ

Measurements are consistent with the SM

Variable	Data Statistical [%]	MC Statistical [%]	Experimental [%]	Theory [%]
Уее	14–22	5.3-10	6.9–15	5.9–15
$p_{\mathrm{T}}^{\ell\ell}$	15-29	6.4–14	8.2-31	6.8–27
$p_{\mathrm{T}}^{\ell 0}$	13-28	6.3–13	9.3-28	14–34
$\Delta \phi_{\ell\ell}$	11–39	6.1–18	7.8-22	13-27
У <i>ј</i> 0	23-51	12-26	21-54	26-58
$\cos \theta^*$	11-15	5.8-7.6	8.5-11	8.9–14
p_{T}^{H}	8.5-72	6.2–18	10-58	12-27
$m_{\ell\ell}$	12-25	5.6-11	7.5-15	7.3-20
$y_{\ell\ell}$ vs $N_{\rm jet}$	9.0-62	3.9–25	8.0-20	5.0-53
$p_{\rm T}^{\ell\ell}$ vs $N_{\rm jet}$	9.8-36	4.7-20	12-41	9.9-50
$p_{\rm T}^{\ell 0}$ vs $N_{\rm jet}$	9.6-50	5.8-20	10-35	9.4–74
$\Delta \phi_{\ell\ell}$ vs $N_{\rm jet}$	9.6-65	5.6-18	6.8-31	14–74
$\cos \theta^*$ vs $N_{\rm jet}$	13-50	6.8–25	7.7–39	8.9-58
$m_{\ell\ell}$ vs $N_{\rm jet}$	12-152	5.7–44	8.9–58	7.2–82

Internal

√s = 13 TeV, 140 fb⁻¹

ATLAS

VH, $H \rightarrow b\overline{b}/c\overline{c}$

VH, H→bb + H→cc

- Data: 140 fb^{-1} , full ATLAS Run 2
- Measurements: Differential σ with STXS framework, kappa interpretation
- Validation with VZ, $Z \rightarrow bb$ or cc
- Final state: $Z \rightarrow \ell \ell$ and $W \rightarrow \ell \nu$

σ consistent with SM expectations at 90%

¥

15

10

 κ_{h}

VH, $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu + \ell \nu j j$

- Data: 139 fb^{-1} , full ATLAS Run 2
- Performed in 4 channels
- Different MVA discriminants adapted to background composition are used
- Used input variables based on reconstructed objects kinematics

e.g. E_T^{miss} , m_T^W , $p_T^{l_0}$

Measurements are stats dominated

Measurements consistent with SM

ttH, H→bb

- Data: 140 fb^{-1} , full ATLAS Run 2
- Measurement: Inclusive σ in full phase space, STXS
- Final state: single + dilepton channels
- Fit: Classification in p_T^H bins by a multiclass NN; reconstruction of p_T^H and separation signal to background by a MVA

Consistent with SM => Test SM in extreme phase-space