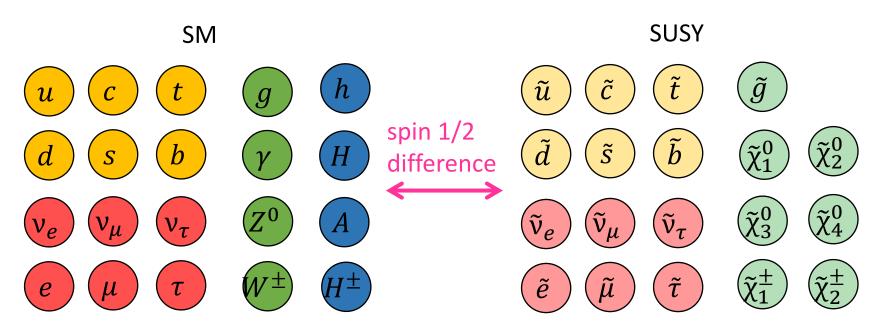
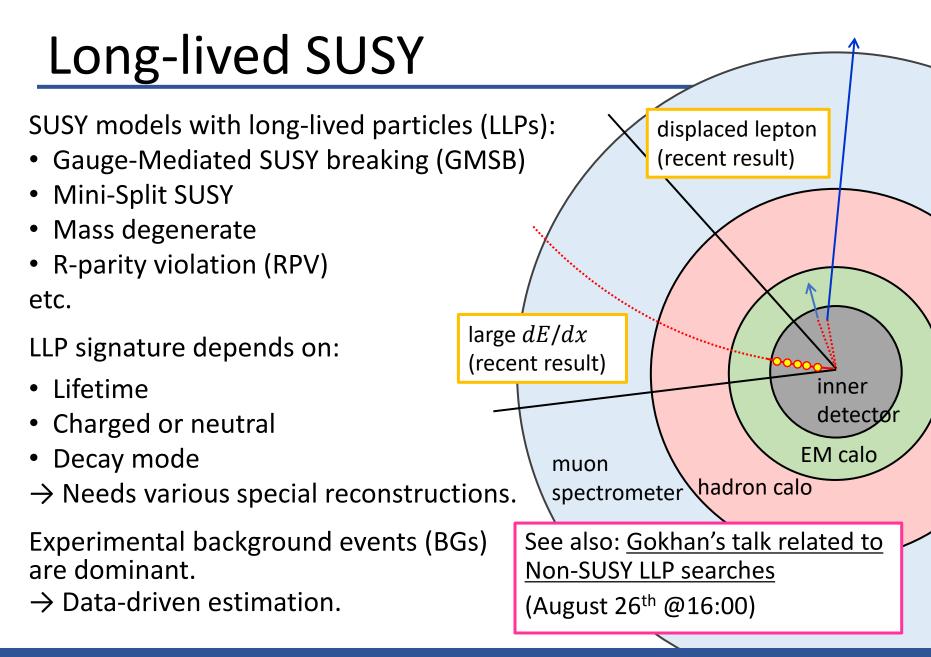


ATLAS searches for non-minimal and long-lived SUSY scenarios


Risa Ushioda (Tokyo Tech) on behalf of the ATLAS Collaboration

XIII International Conference on New Frontiers in Physics August 28th, 2024

Risa Ushioda (Tokyo Tech)


Supersymmetry

- The Standard Model (SM) predictions agree with the measurements thought orders of magnitude
- Several problems: Fine-tuning problem in the Higgs boson mass, dark matter, neutrino mass, etc.
- Supersymmetry (SUSY) is one of the elegant solutions to them

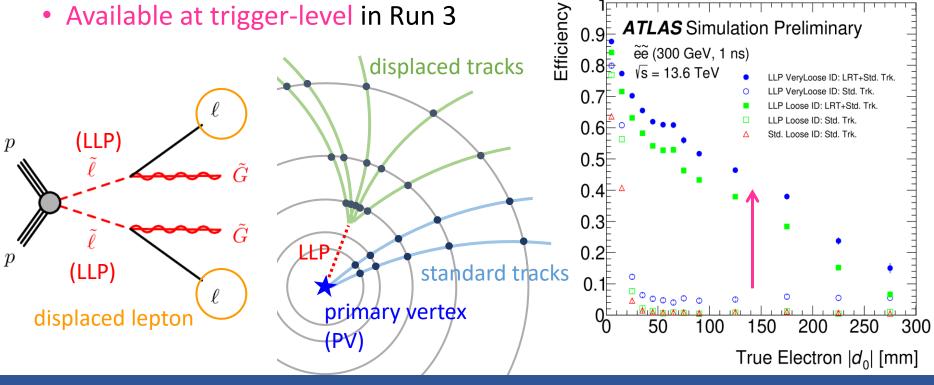
ATLAS SUSY Searches

- Major SUSY models searched in ATLAS:
 - Simplified models (i.e. few free parameters, production/decay modes)
 - R-parity conservation
 → The lightest SUSY particle (LSP) is stable.
 - Minimal flavour violation
 - SUSY particles other than LSP decay promptly
- A variety of other unconventional models have also been searched using full Run 2 and partial Run 3 data

Long-lived SUSY

Recent Results on Searches for Long-lived SUSY

Improve reconstruction

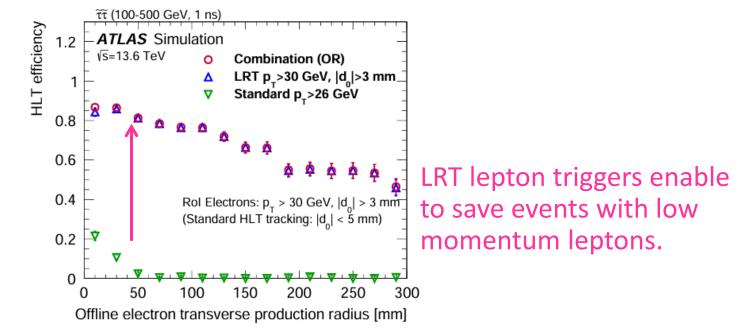

efficiency of LLP objects.

Displaced Leptons

- Motivation: GMSB
- Full Run 2 + partial Run 3 data analysis

Large radius tracking (LRT)

 Reconstruct tracks with large impact parameters using unused hits after standard tracking



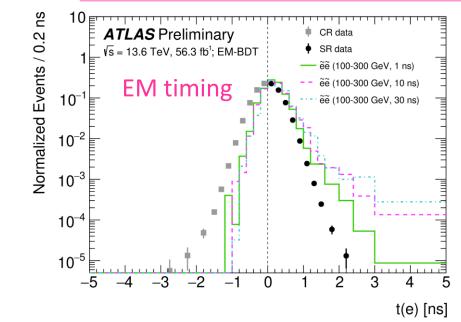
Risa Ushioda (Tokyo Tech)

Displaced Leptons

Strategy 1: Displaced leptons

• Photon, muon, or LRT lepton triggers (Run 3 only)

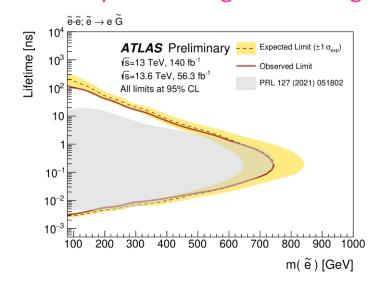
- LRT and looser lepton identification requirements
- Signal region (SR): Displaced ee/eμ/μμ
- BGs: Fake leptons, leptons from heavy flavour decay, cosmic muons
 → Estimate using ABCD method.

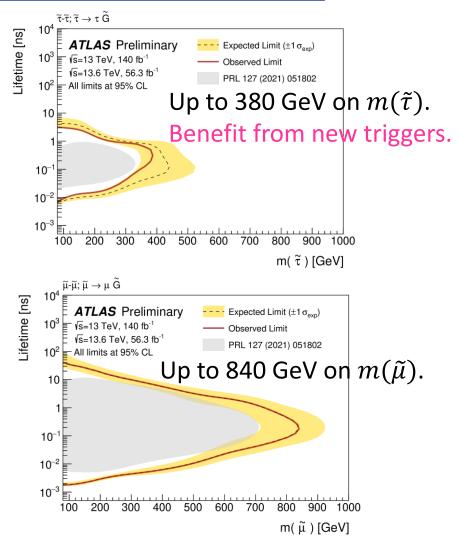

Displaced Leptons

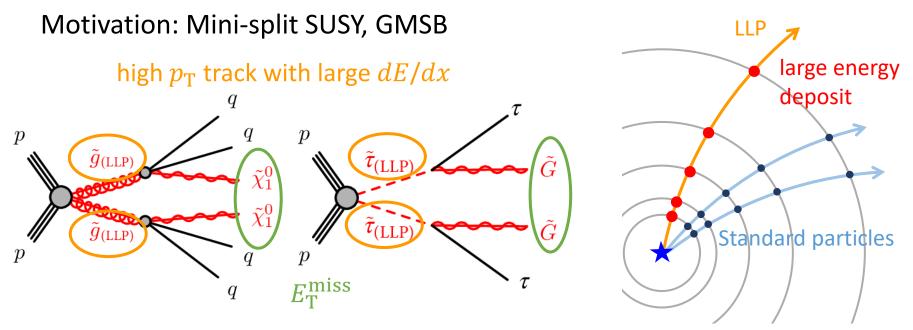
Strategy 2: BDT-based selection (Run 3 only)

- Photon or LRT lepton triggers
- BDT using $ee/\gamma\gamma$ information
- SR: High BDT score
 + leading e/γ with t > 0
- BGs: Prompt objects
 - → Estimate using events with e/γ with t < 0.

 e/γ with t < 0. EM e^{χ} EM middle layer EM first layer 10^{-1} 10^{-2} 10^{-3} 10^{-4} 10^{-4} EM displacement Displaced electrons which decay too late to leave a track are reconstructed as photons.


- *e*BDT: Leading *e*'s track info, EM timing and displacement, etc.
- γBDT: Two γs' EM timing and displacement, etc.




Displaced Leptons

<u>Results</u>: Exclusion limits are set on $m(\tilde{e})/m(\tilde{\mu})/m(\tilde{\tau})$ as a function of lifetime.

Up to 740 GeV on $m(\tilde{e})$. The BDT-based analysis improved the sensitivity in the long lifetime region.

- Missing transverse momentum ($E_{\rm T}^{\rm miss}$) from LSPs
- Tracks with high transverse momentum (p_T) and large energy deposit (*dE/dx*) by a non-relativistic LLP
 → 3.3σ excess in the previous analysis
- If it comes from an LLP, the time of flight (ToF) at the calorimeter should be consistent ← New !

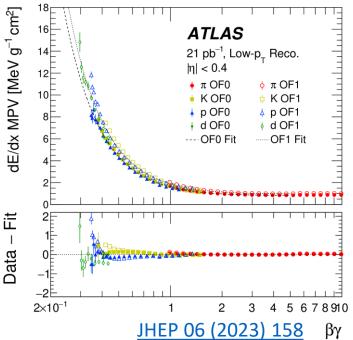
CONF-SUSY-2022-12

dE/dx- $\beta\gamma$ calibration

- Most provable value (MPV) of the dE/dx is corrected based on the period and η
- Calibrate dE/dx- $\beta\gamma$ relation using lowmomentum SM particles

β measurement in the calorimeter (β_{ToF})

• Measurements in *i*-th calorimeter cell:


$$\mathcal{B}_i = 1/(1 + \frac{ct_i}{l_i})$$

(t_i : measured timing, l_i : distance from the PV)

• β_{ToF} : Weighted average of β_i in calorimeter cells

<u>Strategy</u>

- SR: $E_{\rm T}^{\rm miss}$ > 170 GeV + $\beta_{\rm ToF}$ < 1 2 $\sigma_{\rm ToF}$ + Track with dE/dx > 1.8 MeV/g⁻¹ cm² and $p_{\rm T}$ > 120 GeV
- BGs: Estimate using toys sampled from a control region

displaced leptons

AS Preliminary

√s=13,13.6 Te /, 140-196 fb

— Observed

10⁻²

···· Expecte

All limits at 95% CL

Stau. $\tilde{\tau} \rightarrow \tau \tilde{G}$

Results

∑³⁰⁰⁰ ⊕ 2800

j<u>@</u>2600

2400

2200

2000

1800

1600

1400

1200

1000

 $m(\tilde{g})$ up to 2.3 TeV

 $@m(\tilde{\chi}_1^0) = 100 \text{ GeV}$

ATLAS Preliminary

√s=13 TeV, 140 fb⁻¹

All limits at 95% CL

 $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$, $m_{\chi} = 100 \text{ GeV}$

Gluino R-hadron

- 9 events in SR (est. 5.1 \pm 0.5)
- 6 of them have compatible $m_{dE/dx} - m_{\beta_{T_0F}}$ (est. 3.7 ± 0.4) \rightarrow 1.8 σ excess in 200 GeV mass window.
- Exclusion limits on each target model:

900

800

700

600F

500

400F

300F

200E

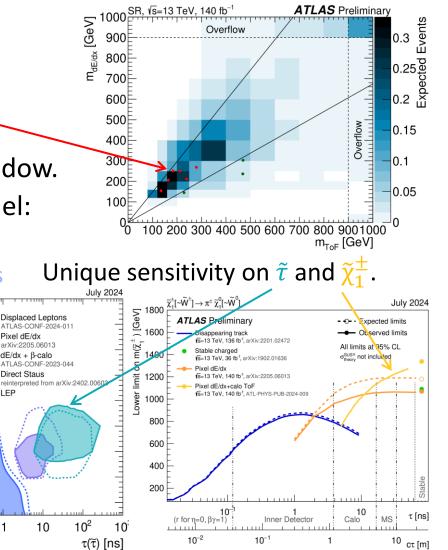
100[

Prompt 10⁻³

n(ĩ) [GeV]

Observed $\pm 1 \sigma$

Expected $\pm 1 \sigma_{ex}$


Expected $\pm 2 \sigma_{exp}$

 10^{3}

 $\tau(\tilde{g})$ [ns]

 10^{2}

10

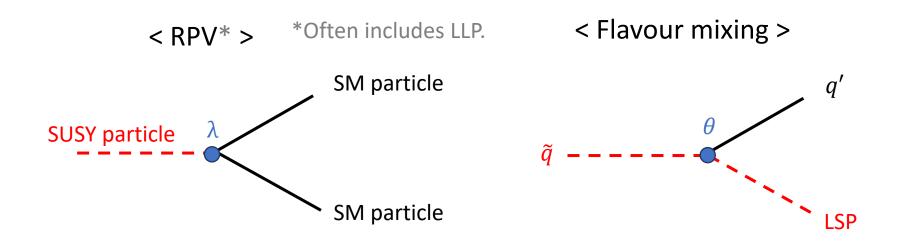
Risa Ushioda (Tokyo Tech)

 10^{-1}

Pixel dE/dx

arXiv:2205.06013

dE/dx + β-calo


10

Direct Staus

LEP

Non-minimal SUSY (Prompt)

Several non-minimal SUSY models with prompt SUSY particles have been searched in the ATLAS.

The LSP decays to the SM particles with RPV coupling constant λ . \rightarrow No significant $E_{\rm T}^{\rm miss}$.

The SUSY particle decays to the SM particle in different generation through mixing angle θ .

Non-minimal SUSY (Prompt)

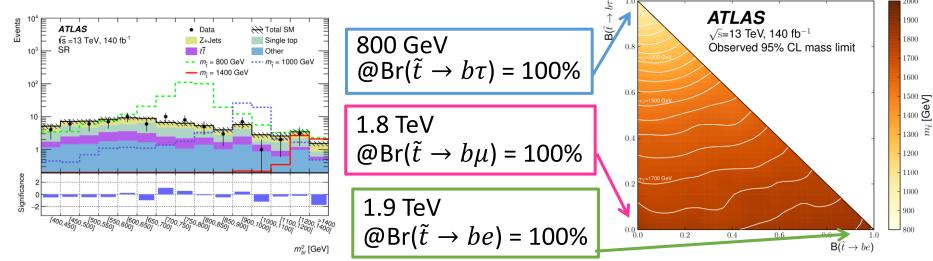
Recent Results on Searches for Non-minimal SUSY

arXiv:2406.18367

 $m_{bl}^{\text{asym}} = \frac{m_{bl}^0 - m_{bl}^1}{m_{bl}^0 + m_{bl}^1}$

<u>Results</u>: Limits on $m(\tilde{t})$ as a

function of branching ratio.


р

B - L RPV Stop

- Motivation: Local B L symmetry with RPV
- Full Run 2 data analysis

Strategy

- 2 opposite charge leptons + 2 jets (≥ 1 *b*-tagged)
- Pair lepton-jet, minimizing m^{asym}_{bl}
- SR binned by m_{bl}^0 ($m_{bl}^{asym} < 0.2$ is required) <u>BGs</u>: $t\bar{t}$, single t, Z+jets

Risa Ushioda (Tokyo Tech)

b

JHEP 07 (2024) 250

p

Stop to Top or Charm

- Motivation: Flavour mixing of 2nd and 3rd generation squarks
- Br $(\tilde{t} \to t \tilde{\chi}_1^0)$ = Br $(\tilde{t} \to c \tilde{\chi}_1^0)$ = 50% when the mixing is maximal
- Use hadronically decaying top quark
- Full Run 2 data analysis

Boosted top-tagging

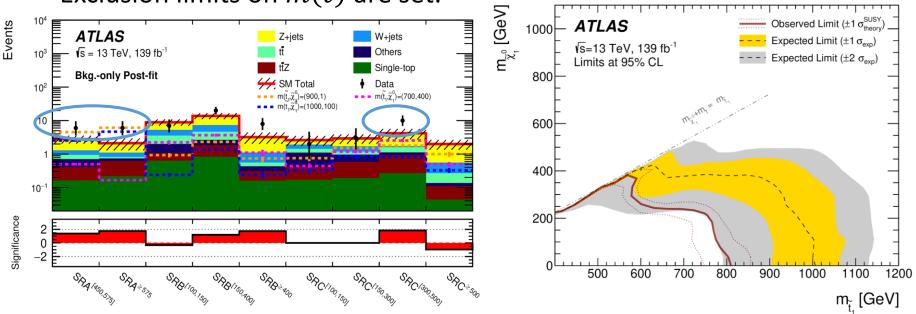
- A top quark decays to a *b*-quark and a *W*-boson
- DNN top-tagger identifies a large-*R* jets with multi boosted and collimated small-*R* jets by looking at jet substructure

Strategy

- High $E_{\rm T}^{\rm miss}$ + multi-jets (\geq 1 *b*-tagged & \geq 1 *c*-tagged)
- Use top-tagger and analysis-specific *c*-tagger

 $W \to qq$

h


large-*R* jet from top

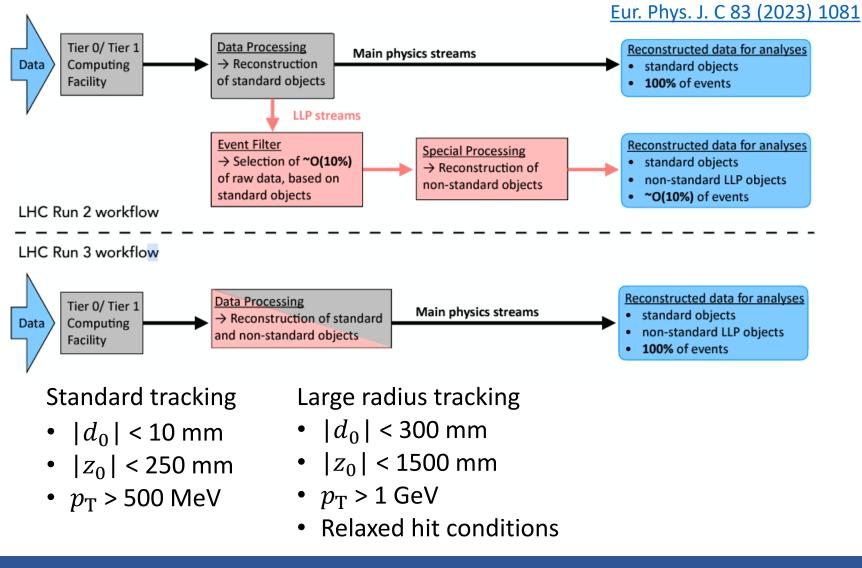
Stop to Top or Charm

<u>SR</u>: Multiple SRs are defined depending on target model:

- Small $\Delta m(\tilde{t}, \tilde{\chi}_1^0)$: Initial radiation state jet + high NN score to distinguish signal and BG
- Large & intermediate $\Delta m(\tilde{t}, \tilde{\chi}_1^0)$: Top-tagged large-*R* jet <u>BGs</u>: Z/W+jets, single- $t, t\bar{t}$

<u>Result</u>: Mild excess in SRs for large & intermediate Δm. Exclusion limits on $m(\tilde{t})$ are set.

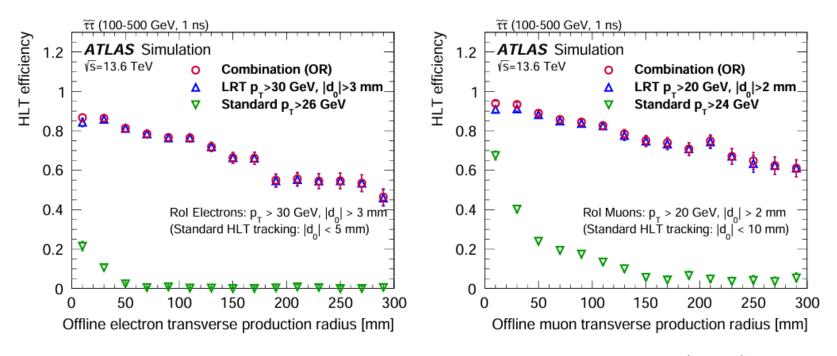
Risa Ushioda (Tokyo Tech)


Summary

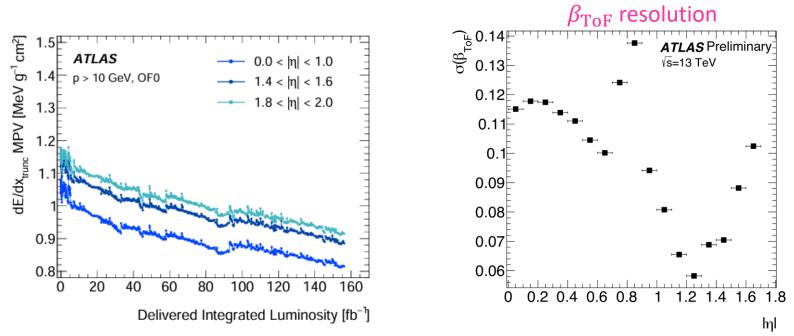
- Various searches targeting SUSY models including LLP or nonminimal assumptions have been performed in the ATLAS.
- Special reconstructions and analysis methods are used for each target model to capture unconventional signals.
- No evidence of new physics was found so far, but those results gives the constraints to the parameter space.
- Several full Run 2 analyses are in preparation for new results, and many partial Run 3 analyses are also progressing.
- Run 3 is on-going and will improve sensitivity thanks to more statistics and new techniques.

Backup

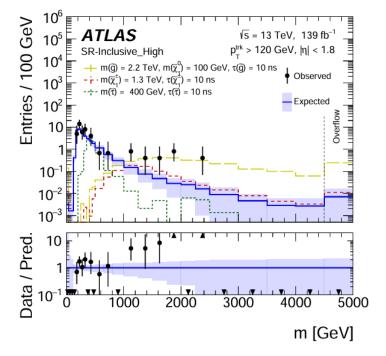
Risa Ushioda (Tokyo Tech)


LRT

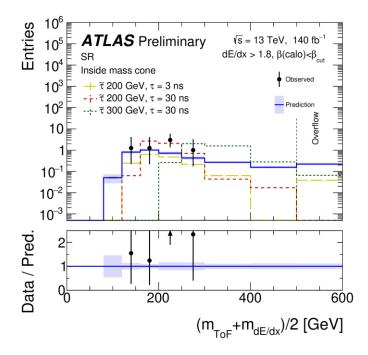
ATLAS Data


	Full Run 2 (2015-2018)	Partial Run 3 (2022-2023)
Center of mass energy	13 TeV	13.6 TeV
Integrated luminosity	140 fb^{-1}	56.3 fb ^{-1}

LRT Lepton Trigger

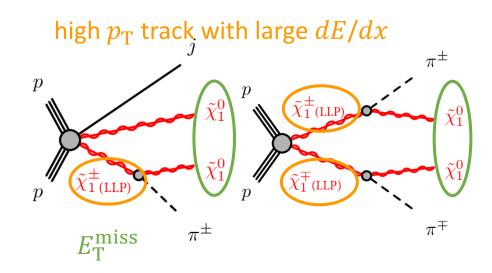


JINST 19 (2024) P06029


- *dE/dx*_{trunc}: Remove the highest, or 2 highest clusters to reduce the effect of the tails of the Landau distribution and exclude IBL overflow clusters
 - Average number of clusters used in dE/dx_{trunc} is 2.7 per track
- dE/dx_{corr} : Corrected dE/dx_{trunc} for variations of Pixel conditions during the data-taking period and for $|\eta|$

< Previous result >

< New result >

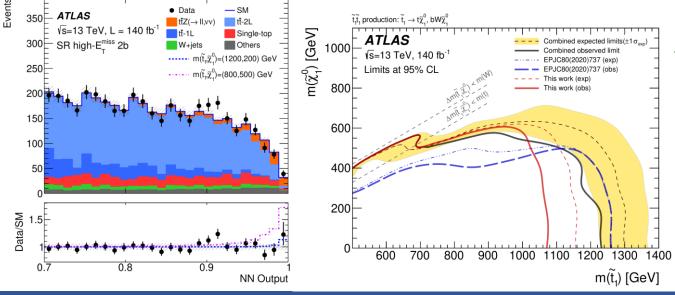


				-
Region	$E_{\rm T}^{\rm miss}$ [GeV]	$dE/dx \ [MeV g^{-1}cm^2]$	β_{ToF}	
SR	> 170	> 1.8	$< \beta_{cut}$]
kin-CR	> 170	< 1.6	< 1.0	-
$eta\gamma$ –CR	< 150	-	< 1.0	-
$ extsf{High}eta_{ extsf{ToF}} extsf{-VR}$	> 170	> 1.8	$[\beta_{cut}, 1.0]$	1 1
High $eta_{ m ToF}$ -VR kin-CR	> 170	< 1.6	$[\beta_{cut}, 1.0]$	`
High $\beta_{\rm ToF}$ -VR $\beta\gamma$ -CR	< 150	-	$[\beta_{cut}, 1.0]$	
LowdEdx-VR	> 170	[1.05, 1.6]	$< \beta_{cut}$	
LowdEdx kin-CR	> 170	< 1.05	< 1.0	
LowdEdx $\beta\gamma$ -CR	< 150	< 1.6	< 1.0	

→ Kinematic template → dE/dx and β_{ToF} template

Make mass distribution

Interpretation to long-lived chargino in mass degenerate $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$.


- Anomaly-mediated SUSY breaking models with a wino scenario
- Wino $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_1^0$

<u>JHEP 07 (2024) 250</u>

Top Pair + MET

Strategy

- High MET + 1 lepton + jets
- Use event-level NN to distinguish signal and BGs
- Two SR categories:
 - High $E_{\rm T}^{\rm miss}$ SRs: MET > 230 GeV + 3 or more jets
 - Boosted SRs: Large-*R* jet
- <u>BGs</u>: Z/W+jets, single- t, $t\overline{t}$

<u>Results</u>

- Mild excess in high $E_{\rm T}^{
 m miss}$ SRs
- Set exclusion limits

Risa Ushioda (Tokyo Tech)

q