

Run: 265545 Event: 1020606 2015-05-21 09:39:35 CEST

Università di Roma

Tor Vergata

Istituto Nazionale di Fisica Nucleare

13 TeV collisions

Umberto De Sanctis (INFN & Università Roma Tor Vergata) on behalf of the ATLAS Collaboration

Outline

- ATLAS HF physics programme covers a wide range of studies:
 - > Open heavy-flavour and heavy quarkonium production
 - Spectroscopy (including exotic states)
 - Decays (CPV, rare and semi-rare decays etc.)
- Competitive when (mostly) muon final states are involved and when statistics plays a crucial role
- In today talk:
 - How ATLAS triggers Heavy Flavour events
 - > Recent Heavy Flavour ATLAS results covered in this talk:
 - > Measurement of the J/ Ψ and Ψ (2S) differential cross-sections
 - Search for di-charmonium events paper
 - \succ Bs \rightarrow µµ effective lifetime measurement paper

<u>paper</u>

The ATLAS Experiment

- > ATLAS (**A** Toroidal LHC Apparatu**S**)
 - "The Physics Giant"
 - ➤ 44x25 m, 7000 t
 - A multipurpose detector to find new particles and measure the properties of well-known particles

Integrated luminosities

- ATLAS collected data from 2010 to 2018 at a centre-of-mass energy $\sqrt{s} = 7,8$ and 13 TeV
 - ▶ Run I (2010-2013) \rightarrow 4.9 fb⁻¹ @ 7 TeV + 20.3 fb⁻¹ @ 8 TeV
 - ▶ Run 2 (2015-2018) → 139 fb⁻¹ @ 13 TeV

Integrated luminosities

- ATLAS collected data from 2010 to 2018 at a centre-of-mass energy $\sqrt{s} = 7,8$ and 13 TeV
 - ▶ Run I (2010-2013) → 4.9 fb⁻¹ @ 7 TeV + 20.3 fb⁻¹ @ 8 TeV
 - ➢ Run 2 (2015-2018) → 139 fb⁻¹ @ 13 TeV

Typical B-physics signatures

- B-physics signatures at hadron colliders are mainly made by:
 - ➤ Low transverse momentum (P_T) muons → Tracking system + muon system
 - \succ Tracks in the Inner detector \rightarrow Tracking system
 - \triangleright Rarely photons/electrons \rightarrow Electromagnetic calorimeter

➤ Trigger these events is complicated due to low thresholds in muon P_T → Incompatible with bandwidth constraints at high lumin.
 ➤ In addition ATLAS (and CMS) does not have specific detectors for particle identification → Kaons, pions, protons are all "just" tracks

Triggering events in Run 1 and Run 2

- ➢ Regional readout → Define a Region of Interest (RoI) around the L1 muons
 - ➤ Lower rate but less efficient for low-P_T
 - Primary trigger in most of Run1
- Run2 : Topological trigger!
- Use info on PT, η and φ of the muon ROIs to build topological di-muon quantities (inv.mass or ΔR):
 - Efficient way to reduce bandwidth usage keeping the signal efficiency high
 - Gain up to a factor of 3 in dimuon background rejection!
 - Baseline for 2017-18 data (with MU4_MU6 and 2MU6 thresholds

Istituto Nazionale di Fisica Nucleare

- > Despite its discovery dated almost 50 years, the QCD production mechanisms of charmonia (Ψ = J/ Ψ or Ψ (2S)) is still not fully understood
 - Non-prompt production is reasonably well predicted by pQCD
 - Prompt production still to be understood.
- > Goal: measure the J/ Ψ and Ψ (2S) differential cross-sections in **P**_T and **y** separately in prompt and non-prompt production
 - $\forall \Psi \rightarrow \mu\mu$
 - > Triggers:
 - > 2mu4 → 2.6 fb⁻¹ to cover the region 8 GeV < PT(Ψ) < 60 GeV
 - > Mu50 \rightarrow 139 fb⁻¹ to cover the region PT(Ψ) > 60 GeV
 - > Offline cuts on Ψ follow the two trigger regions
- > Cross-section computed in the fiducial region (PT cuts as above + $|\eta(\mu)| < 2.4$) where ATLAS has the highest precision:
 - 2.4) where ATLAS has the highest precision:
 - For the J/ Ψ and Ψ (2S) mesons
 - For prompt (P) vs non-prompt (NP)
- > Differential cross-section ratio NP/P is also measured

> Backgrounds:

- \succ Mass \rightarrow Polynomial or exponential
- Proper-time:
 - \triangleright P \rightarrow Delta with gaussian smearing
 - \rightarrow NP \rightarrow 2 exponentials

<u>paper</u>

b jet

vertex

Conclusions:

- > Ψ differential cross-section measured in P_T and y
- Range in P_T between 8 and 360 GeV
- Prompt:
 - > Much harder spectra predicted, room for improvement in all models
- > Non-prompt:

Università di Roma

Di-charmonium events

➢ In 2020 LHCb found:

> A narrow structure X(6900) in the di-J/ Ψ channel

> A broad structure just above twice the J/ Ψ mass

Science Bulletin 65 (2020) 1983

> Look for confirmation in the di-J/ Ψ spectrum and for structures also above the J/ Ψ - Ψ (2S) threshold

Signal region	Control region	Non-prompt region			
Di-muon or tri-muon triggers, oppositely charged muons from each charmonium, <u>loose muons</u> , $p_T^{1,2,3,4} > 4, 4, 3, 3 \text{ GeV}$ and $ \eta_{1,2,3,4} < 2.5$ for the four muons, $m_{J/\psi} \in [2.94, 3.25]$ GeV, or $m_{\psi(2S)} \in [3.56, 3.80]$ GeV, Loose vertex requirements $\chi^2_{4\mu}/N < 40$ ($N = 5$) and $\chi^2_{di-\mu}/N < 100$ ($N = 2$),					
Vertex $\chi^2_{4\mu}/N < 3$, $L^{4\mu}_{xy} < 0.2$ mm, $ L^{\text{di-}\mu}_{xy} < 0.3$ mm, $m_{4\mu} < 11$ GeV, Vertex $\chi^2_{4\mu}/N > 6$,					
$\Delta R < 0.25$ between charmonia	$\Delta R \ge 0.25$ between charmonia	or $ L_{xy}^{\text{di-}\mu} > 0.4 \text{ mm}$			

Fit to the 4µ mass distribution with m(4µ) < 11 GeV and ΔR < 0.25 (SR)/ ΔR > 0.25 (CR)

Istituto Mazionale di Fisica Nucleare

Di-J/Y events

ICFNP, 26/08/2024

Istituto Nazionale di Fisica Nucleare

$J/\Psi + \Psi(2S)$ events

Tor Vergata

ICFNP. 26/08/2024

Istituto Nazionale di Fisica Nucleare

Bs $\rightarrow \mu\mu$ effective lifetime measurement

- Rare but clean decay suppressed by FCNC in the SM \gg BR(Bs \rightarrow µµ) = (3.66 ± 0.14) ×10⁻⁹ \gg BR(Bd \rightarrow µµ) = (1.03 ± 0.05) ×10⁻¹⁰
- Three suppression factors:
 - FCNC processes forbidden at tree-level
 - \succ CKM elements (V_{ts}, V_{td})
 - ➢ Helicity suppression (0⁻ state going into two fermions)
- Sensitive to New Physics contributions through loops
- The effective lifetime is a complementary measurement with respect to the BR:

paper

Sensitive to the CP structure of potential NP In the SM $A_{\Delta\Gamma} = +1$ (CP-odd)

$$\tau_{\mu^{+}\mu^{-}} = \frac{\tau_{B_{s}^{0}}}{1 - y_{s}^{2}} \left(\frac{1 + A_{\Delta\Gamma}^{\mu^{+}\mu^{-}} y_{s} + y_{s}^{2}}{1 + A_{\Delta\Gamma}^{\mu^{+}\mu^{-}} y_{s}} \right)$$

holds, where

> $\tau_{B_s^0} = 1.510 \pm 0.005 \ ps$ is the B_s^0 mean lifetime;

$$y_s = \tau_{B_s^0} \Delta \Gamma/2;$$

Università di Roma

 $\Delta\Gamma$ is the difference between light and heavy mass eigenstates decay width.

Bs $\rightarrow \mu\mu$ effective lifetime measurement

- > Same dataset used for the latest BR $(B_{(s)}^0 \rightarrow \mu^+ \mu^-)$ measurement <u>BR paper</u>
- Main backgrounds for the measurement:
 - Combinatorial background: real muons coming from the decay chain of b and b initial quarks
 - → Partially reconstructed B decays: real muons coming from B → $\mu\mu$ +X decays
 - Any B-hadron decay involving k/π faking a muon (e.g. B→µhX or B→hh').
- > The key variable is the proper decay time $t = \frac{L_{xy}m_B}{|\vec{p}_T^B|}$
- New optimisation of the BDT selection tailored for the effective lifetime measurement
 - One single BDT region > 0.3650

16

Istituto Nazionale di Fisica Nucleare

Analysis strategy

<u>paper</u>

- 1. UEML fit to the dimuon invariant mass distribution based on 2015-2016 models for signal and background components to extract the number of candidates.
 - > Signal modelled with a double Gaussian
 - > Continuum background modelled with a 1° order pol.
 - Partially reconstructed decays modelled with an exponential
- 2. Use sPlot to extract signal proper time distribution from data.
 - The sPlot technique allows to estimate the distribution of a control variable using the known distribution of a discriminating variable.
 - ➤ The proper decay time is the control variable, the mass the discriminating variable → minimal correlation between them.
- 3. Compare the signal proper time distribution with the MC templates to extract the lifetime.
 - MC templates generated for different lifetimes
 - $\succ \chi^2$ minimization used to find the best template.

Results

Istituto Nazionale di Fisica Nucleare

Measured value:

 $\tau_{\mu\mu} = (0.99)^{+0.42}_{-0.07}(stat.) \pm 0.17(syst) \, ps$ \succ Corrected for the fit bias of 82 fs

Stat. uncertainty is dominant:

 Estimated with the Neyman belt construction

> Main systematics:

- Data/MC discrepancies
- Mass fit modelling
- Lifetime dependence
- Similar precision as CMS and LHCb with the same dataset (syst. uncert. in red)
 - Compatible with the SM and all other measurements

Conclusions & outlooks

- The ATLAS programme in flavour physics is quite rich and cover a good portion of the most interesting topics in the domain
 - Competitive in final states with muons and when statistics is important
- Recent highlights in heavy flavour physics by ATLAS with Run
 2 data have been shown:

> Measurement of the J/ Ψ and Ψ (2S) differential cross-sections

- > Bs $\rightarrow \mu\mu$ effective lifetime measurement
- Search for di-charmonium events
- New measurements using the full Run2+ Run3 statistics are ongoing: stay tuned!

BACKUP

20

paper

- > Despite its discovery dated almost 50 years, the QCD production mechanisms of charmonia ($\Psi = J/\Psi$ or $\Psi(2S)$) is still not fully understood
 - Non-prompt production is reasonably well predicted by pQCD
 - Prompt production still to be understood.
- > Goal: measure the J/ Ψ and Ψ (2S) differential cross-sections in **P**_T and **y** separately in prompt and non-prompt production
 - $\forall \Psi \rightarrow \mu\mu$
 - > Triggers:
 - > 2mu4 → 2.6 fb⁻¹ to cover the region 8 GeV < $PT(\Psi)$ < 60 GeV
 - > Mu50 \rightarrow 139 fb⁻¹ to cover the region PT(Ψ) > 60 GeV
 - > Offline cuts on Ψ follow the two trigger regions

21

Fit model

i	Type	P/NP	$f_i(m)$	$h_i(au)$
1	J/ψ	Р	$\omega_0 G_1(m) + (1 - \omega_0) [\omega_1 CB(m) + (1 - \omega_1) G_2(m)]$	$\delta(au)$
2	J/ψ	NP	$\omega_0 G_1(m) + (1 - \omega_0) [\omega_1 CB(m) + (1 - \omega_1)G_2(m)]$	$\omega_2 E_1(\tau) + (1 - \omega_2) E_1(b\tau)$
3	$\psi(2S)$	Р	$\omega_0 G_1(\beta m) + (1-\omega_0)[\omega_1 CB(\beta m) + (1-\omega_1)G_2(\beta m)]$	$\delta(au)$
4	$\psi(2S)$	NP	$\omega_0 G_1(\beta m) + (1 - \omega_0)[\omega_1 CB(\beta m) + (1 - \omega_1)G_2(\beta m)]$	$E_2(au)$
5	Bkg	Р	Р	$\delta(au)$
6	Bkg	\mathbf{NP}	$E_3(m)$	$E_4(au)$
7	Bkg	NP	$E_5(m)$	$E_6(\tau)$

22

24

Systematic uncertainites budget

ICFNP, 26/08/2024

25

Di-charmonium events

> Unbinned ML fit to the 4 μ mass distribution with m(4 μ) < 11 GeV and Δ R < 0.25 (SR)/ Δ R > 0.25 (CR)

Fit model: several interfering Breit-Wigner functions convoluted with Mass Resolution functions

di-J/
$$\Psi$$
 model A $f_s(x) = \left|\sum_{i=0}^2 \frac{z_i}{m_i^2 - x^2 - im_i\Gamma_i(x)}\right|^2 \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2}} \otimes R(\theta)$

z_i complex numbers representing the amplitudes

28

 Interference between the 3 resonances

di-J/
$$\Psi$$
 model B $f(x) = \left(\left| \frac{z_0}{m_0^2 - x^2 - im_0\Gamma_0(x)} + A(x)e^{i\phi} \right|^2 + \left| \frac{z_2}{m_2^2 - x^2 - im_2\Gamma_2(x)} \right|^2 \right) \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2}} \otimes R(\theta),$
Interfere with SPS Standalone
J/ Ψ + Ψ (2S) model α : $f_s(x) = \left(\left| \sum_{i=0}^2 \frac{z_i}{m_i^2 - x^2 - im_i\Gamma_i(x)} \right|^2 + \left| \frac{z_3}{m_3^2 - x^2 - im_3\Gamma_3(x)} \right|^2 \right) \sqrt{1 - \left(\frac{m_{J/\psi} + m_{\psi}(2S)}{x} \right)^2} \otimes R(\theta)$

J/ Ψ + Ψ (2S) model β : as model α with one single resonance

Parameters of the first three resonances are fixed to those extracted in the di-J/ Ψ fit

Mass/widths for the $di-J/\Psi$ resonances

Fitted masses and natural widths for the various models

paper

(29)

di- J/ψ	model A	model B
m_0	$6.41 \pm 0.08 \substack{+0.08 \\ -0.03}$	$6.65 \pm 0.02^{+0.03}_{-0.02}$
Γ_0	$0.59 \pm 0.35^{+0.12}_{-0.20}$	$0.44 \pm 0.05 ^{+0.06}_{-0.05}$
m_1	$6.63 \pm 0.05 \substack{+0.08 \\ -0.01}$	
Γ_1	$0.35 \pm 0.11^{+0.11}_{-0.04}$	
m_2	$6.86 \pm 0.03^{+0.01}_{-0.02}$	$6.91 \pm 0.01 \pm 0.01$
Γ_2	$0.11 \pm 0.05 ^{+0.02}_{-0.01}$	$0.15 \pm 0.03 \pm 0.01$
$\Delta s/s$	$\pm 5.1\%^{+8.1\%}_{-8.9\%}$	
$J/\psi + \psi(2S)$	model α	model β
m_3	$7.22 \pm 0.03 \substack{+0.01 \\ -0.04}$	$6.96 \pm 0.05 \pm 0.03$
Γ_3	$0.09 \pm 0.06^{+0.06}_{-0.05}$	$0.51 \pm 0.17^{+0.11}_{-0.10}$
$\Delta s/s$	$\pm 21\%^{+25\%}_{-15\%}$	$\pm 20\% \pm 12\%$

Bs $\rightarrow \mu\mu$ effective lifetime measurement

2	0
J	U

Uncertainty source	$\Delta au^{ m Obs}_{\mu\mu}$ [fs]
Data - MC discrepancies	134
SSSV lifetime model	60
Combinatorial lifetime model	56
B kinematic reweighting	55
B isolation reweighting	32
SSSV mass model	22
B_d background	16
Fit bias lifetime dependency and B_s^0 eigenstates admixture	15
Combinatorial mass model	14
Pileup reweighting	13
B_c background	10
Muon Δ_{η} correction	6
$B \rightarrow hh'$ background	3
Muon reconstruction SF reweighting	2
Semileptonic background	2
Trigger reweighting	1
Total	174

Bs $\rightarrow \mu\mu$ effective lifetime measurement

Toy MC example

Proper decay time [ps]

31

Università di Roma

Events / ps