

Run: 265545 Event: 1020606 2015-05-21 09:39:35 CEST

results fro

Istituto Nazionale di Fisica Nucleare

1

Università di Roma

Tor Vergata

13 TeV collisions

Recent Heavy Flavour

on behalf of the ATLAS Collaboration

Outline

- ➢ ATLAS HF physics programme covers a wide range of studies:
	- \triangleright Open heavy-flavour and heavy quarkonium production
	- \triangleright Spectroscopy (including exotic states)
	- Decays (CPV, rare and semi-rare decays etc.)
- \triangleright Competitive when (mostly) muon final states are involved and when statistics plays a crucial role
- \triangleright In today talk:
	- ➢ How ATLAS triggers Heavy Flavour events
	- ➢ Recent Heavy Flavour ATLAS results covered in this talk:
		- \triangleright Measurement of the J/Ψ and Ψ(2S) differential cross-sections
		- ▶ Search for di-charmonium events [paper](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.151902)
		- \triangleright Bs \rightarrow µµ effective lifetime measurement [paper](https://link.springer.com/article/10.1007/JHEP09(2023)199)

pap<u>er</u>

The ATLAS Experiment

- ➢ ATLAS (**A T**oroidal **L**HC **A**pparatu**S**)
	- ➢ "The Physics Giant"
	- \geq 44x25 m, 7000 t
	- \triangleright A multipurpose detector to find new particles and measure the properties of well-known particles

Integrated luminosities

- ➢ ATLAS collected data from 2010 to 2018 at a centre-of-mass energy \sqrt{s} = 7, 8 and 13 TeV
	- > Run I (2010-2013) → 4.9 fb⁻¹ @ 7 TeV + 20.3 fb⁻¹ @ 8 TeV
	- $≥$ Run 2 (2015-2018) $→$ 139 fb⁻¹ @ 13 TeV

4

Integrated luminosities

- \triangleright ATLAS collected data from 2010 to 2018 at a centre-of-mass energy \sqrt{s} = 7, 8 and 13 TeV
	- \triangleright Run 1 (2010-2013) → 4.9 fb⁻¹ @ 7 TeV + 20.3 fb⁻¹ @ 8 TeV
	- $≥$ Run 2 (2015-2018) $→$ 139 fb⁻¹ @ 13 TeV

Typical B-physics signatures

- B-physics signatures at hadron colliders are mainly made by:
	- \triangleright Low transverse momentum (P_T) muons \rightarrow Tracking system + muon system
	- \triangleright Tracks in the Inner detector \rightarrow Tracking system
	- \triangleright Rarely photons/electrons \rightarrow Electromagnetic calorimeter

 \triangleright Trigger these events is complicated due to low thresholds in muon $P_T \rightarrow$ Incompatible with bandwidth constraints at high lumin.

➢ In addition ATLAS (and CMS) does not have specific detectors for particle identification \rightarrow Kaons, pions, protons are all "just" tracks

6

Triggering events in Run 1 and Run 2

- \triangleright Regional readout \rightarrow Define a Region of Interest (RoI) around the L1 muons
	- \triangleright Lower rate but less efficient for low- P_T
	- ➢ Primary trigger in most of Run1
- ➢ Run2 : Topological trigger!
- \triangleright Use info on PT, η and φ of the muon ROIs to build topological di-muon quantities (inv.mass or ∆R):
	- \triangleright Efficient way to reduce bandwidth usage keeping the signal efficiency high
	- ➢ Gain up to a **factor of 3** in dimuon background rejection!
	- ➢ Baseline for 2017-18 data (with MU4 MU6 and 2MU6 thresholds

7

Istituto Nazionale di Fisica Nucleare

Università di Roma **Tor Vergata**

- [paper](https://link.springer.com/article/10.1140/epjc/s10052-024-12439-9) \triangleright Despite its discovery dated almost 50 years, the QCD production mechanisms of charmonia ($\Psi =$ J/ Ψ or $\Psi(2S)$) is still not fully understood
	- \triangleright Non-prompt production is reasonably well predicted by pQCD
	- \triangleright Prompt production still to be understood.
- ➢ Goal: measure the J/Ψ and Ψ(2S) differential cross-sections in **P^T** and **y** separately in prompt and non-prompt production
	- $\triangleright \psi \rightarrow \mu\mu$
	- ➢ Triggers:
		- \geq 2mu4 \rightarrow 2.6 fb⁻¹ to cover the region 8 GeV < PT(Ψ) < 60 GeV
		- \triangleright Mu50 \rightarrow 139 fb⁻¹ to cover the region PT(Ψ) > 60 GeV
	- \triangleright Offline cuts on Ψ follow the two trigger regions
- \triangleright Cross-section computed in the fiducial region (PT cuts as above + $|\eta(\mu)|$ <
	- 2.4) where ATLAS has the highest precision:
		- \triangleright For the J/Ψ and Ψ(2S) mesons
		- \triangleright For prompt (P) vs non-prompt (NP)
- ➢ Differential cross-section ratio NP/P is also measured

- \triangleright P \rightarrow Delta with gaussian smearing
- \triangleright NP \rightarrow 2 exponentials

➢ Backgrounds:

- \triangleright Mass \rightarrow Polynomial or exponential
- ➢ Proper-time:
	- \triangleright P \rightarrow Delta with gaussian smearing
	- \triangleright NP \rightarrow 2 exponentials

 L_{xy} is the projection of Δx_B in the transverse plane.

➢ Conclusions:

- \triangleright Ψ differential cross-section measured in P_T and y
- \triangleright Range in P_T between 8 and 360 GeV
- ➢ Prompt:
	- ➢ Much harder spectra predicted, room for improvement in all models
- ➢ Non-prompt:

Università di Roma Tor Vergata

Di-charmonium events

- \triangleright Search for tetraquarks Tc ($c\bar{c}$ $c\bar{c}$)
- \triangleright In 2020 LHCb found:

 \triangleright A narrow structure X(6900) in the di-J/Ψ channel

 \triangleright A broad structure just above twice the J/Ψ mass

 \triangleright Look for confirmation in the di-J/ Ψ spectrum and for structures also above the J/Ψ-Ψ(2S) threshold

Fit to the 4 μ mass distribution with m(4 μ) < 11 GeV and Δ R < 0.25 (SR)/ Δ R > 0.25 (CR)

ICFNP, 26/08/2024

12

Di-J/Ψ events **¹³**

ICFNP, 26/08/2024

Istituto Nazionale di Fisica Nucleare

J/Ψ + Ψ(2S) events

Tor Vergata

ICFNP, 26/08/2024

14

Istituto Nazionale di Fisica Nucleare

Bs → $\mu\mu$ effective lifetime measurement

- ➢ Rare but clean decay suppressed by FCNC in the SM \triangleright BR(Bs \rightarrow µµ) = (3.66 \pm 0.14) x10⁻⁹ \triangleright BR(Bd $\rightarrow \mu\mu$) = (1.03 \pm 0.05) x10⁻¹⁰
- \triangleright Three suppression factors:
	- ➢ FCNC processes forbidden at tree-level
	- \triangleright CKM elements (V_{ts} V_{td})
	- ➢ Helicity suppression (0- state going into two fermions)
- ➢ Sensitive to New Physics contributions through loops
- \triangleright The effective lifetime is a complementary measurement with respect to the BR: In the SM $A_{\Delta\Gamma} = +1$
	- \triangleright Sensitive to the CP structure of potential NP

$$
\tau_{\mu^{+}\mu^{-}} = \frac{\tau_{B_{S}^{0}}}{1 - y_{S}^{2}} \left(\frac{1 + \sqrt{A_{\Delta\Gamma}^{\mu^{+}\mu^{-}} y_{S} + y_{S}^{2}}}{1 + A_{\Delta\Gamma}^{\mu^{+}\mu^{-}} y_{S}} \right)
$$

holds, where

 \triangleright $\tau_{B_S^0} = 1.510 \pm 0.005 \ ps$ is the B_S^0 mean lifetime;

$$
\Rightarrow y_{S} = \tau_{B_{S}^{0}} \Delta \Gamma / 2;
$$

Università di Roma **Tor Vergata**

 $\Delta\Gamma$ is the difference between light and heavy mass eigenstates decay width.

ICFNP, 26/08/2024

(CP-odd)

Bs → µµ effective lifetime measurement (16

- > Same dataset used for the latest BR $(B_{(s)}^0 \rightarrow \mu^+ \mu^-)$ measurement [BR paper](https://link.springer.com/article/10.1007/JHEP04(2019)098)
- \triangleright Main backgrounds for the measurement:
	- Combinatorial background: real muons

	coming from the decay chain of b and coming from the decay chain of b and b initial quarks
	- ➢ Partially reconstructed B decays: real muons coming from $B \to \mu\mu + X$ decays
	- ρ Any B-hadron decay involving k/π faking a muon (e.g. $B\rightarrow\mu hX$ or $B\rightarrow hh'$).
- \triangleright The key variable is the proper decay time $t=$ $L_{xy}m_B$ \vec{p}_{T}^B
- \triangleright New optimisation of the BDT selection tailored for the effective lifetime measurement
	- \triangleright One single BDT region > 0.3650

Analysis strategy **¹⁷**

[paper](https://link.springer.com/article/10.1007/JHEP09(2023)199)

- 1. UEML fit to the dimuon invariant mass distribution based on 2015-2016 models for signal and background components to extract the number of candidates.
	- \triangleright Signal modelled with a double Gaussian
	- ➢ Continuum background modelled with a 1° order pol.
	- ➢ Partially reconstructed decays modelled with an exponential
- 2. Use sPlot to extract signal proper time distribution from data.
	- ➢ The sPlot technique allows to estimate the distribution of a **control variable** using the known distribution of a **discriminating variable**.
	- \triangleright The proper decay time is the control variable, the mass the discriminating variable \rightarrow minimal correlation between them.
- 3. Compare the signal proper time distribution with the MC templates to extract the lifetime.
	- \triangleright MC templates generated for different lifetimes
	- $\triangleright \chi^2$ minimization used to find the best template.

10 F 5⊏

 0.5

1.5

 \overline{c}

 2.5

3

 3.5 $\tau_{\mu\mu}^{\rm Obs}$ [ps]

Results **¹⁸**

Istituto Nazionale di Fisica Nucleare

➢ Measured value:

- $\pmb{\tau}_{\pmb{\mu}\pmb{\mu}} = (\pmb{0}, \pmb{99})_{-\pmb{0.07}}^{+\pmb{0.42}}(\pmb{stat.}) \pm \pmb{0.17}(\pmb{syst})\,\pmb{ps}$
	- \triangleright Corrected for the fit bias of 82 fs

\triangleright Stat. uncertainty is dominant:

 \triangleright Estimated with the Neyman belt construction

➢ Main systematics:

- ➢ Data/MC discrepancies
- \triangleright Mass fit modelling
- \triangleright Lifetime dependence
- ➢ Similar precision as CMS and LHCb with the same dataset (syst. uncert. in red)
	- \triangleright Compatible with the SM and all other measurements

Università di Roma **Tor Vergata**

Conclusions & outlooks

- ➢ The ATLAS programme in flavour physics is quite rich and cover a good portion of the most interesting topics in the domain
	- \triangleright Competitive in final states with muons and when statistics is important
- \triangleright Recent highlights in heavy flavour physics by ATLAS with Run 2 data have been shown:

 \triangleright Measurement of the J/Ψ and Ψ(2S) differential crosssections

- \triangleright Bs \rightarrow µµ effective lifetime measurement
- \triangleright Search for di-charmonium events
- \triangleright New measurements using the full Run2+ Run3 statistics are ongoing: stay tuned!

19

BACKUP

[paper](https://link.springer.com/article/10.1140/epjc/s10052-024-12439-9)

- \triangleright Despite its discovery dated almost 50 years, the QCD production mechanisms of charmonia ($\Psi =$ J/ Ψ or $\Psi(2S)$) is still not fully understood
	- \triangleright Non-prompt production is reasonably well predicted by pQCD
	- \triangleright Prompt production still to be understood.
- ➢ Goal: measure the J/Ψ and Ψ(2S) differential cross-sections in **P^T** and **y** separately in prompt and non-prompt production
	- $\triangleright \psi \rightarrow \mu\mu$
	- ➢ Triggers:
		- \geq 2mu4 \rightarrow 2.6 fb⁻¹ to cover the region 8 GeV < PT(Ψ) < 60 GeV
		- \triangleright Mu50 \rightarrow 139 fb⁻¹ to cover the region PT(Ψ) > 60 GeV
	- \triangleright Offline cuts on Ψ follow the two trigger regions

Fit model

Systematic uncertainites budget

ICFNP, 26/08/2024

Tor Vergata

Di-charmonium events

 \triangleright Unbinned ML fit to the 4µ mass distribution with m(4µ) < 11 GeV and Δ R < 0.25 (SR)/ Δ R > 0.25 (CR)

➢ Fit model: several interfering Breit-Wigner functions convoluted with Mass Resolution functions

di-J/V model A
$$
f_s(x) = \left| \sum_{i=0}^{2} \frac{z_i}{m_i^2 - x^2 - im_i \Gamma_i(x)} \right|^2 \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2}} \otimes R(\theta)
$$

- z_i complex numbers representing the amplitudes

28

Interference between the 3 resonances

di-J/4 model B
$$
f(x) = \left(\left| \frac{z_0}{m_0^2 - x^2 - im_0 \Gamma_0(x)} + A(x)e^{i\phi} \right|^2 + \left| \frac{z_2}{m_2^2 - x^2 - im_2 \Gamma_2(x)} \right|^2 \right) \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2}} \otimes R(\theta),
$$

Interference with SPS standardance
J/\psi + \psi(2S) model α :
 $f_s(x) = \left(\left| \sum_{i=0}^{2} \frac{z_i}{m_i^2 - x^2 - im_i \Gamma_i(x)} \right|^2 + \left| \frac{z_3}{m_3^2 - x^2 - im_3 \Gamma_3(x)} \right|^2 \right) \sqrt{1 - \left(\frac{m_{J/\psi} + m_{\psi(2S)}}{x} \right)^2} \otimes R(\theta)$

J/Ψ+Ψ(2S) model β : as model α with one single resonance

Parameters of the first three resonances are fixed to those extracted in the di-J/Ψ fit

Mass/widths for the di-J/Ψ resonances **²⁹**

Fitted masses and natural widths for the various models

[paper](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.151902)

Bs → *µµ effective lifetime measurement* **³⁰**

Bs → $\mu\mu$ effective lifetime measurement (31)

Toy MC example

Proper decay time [ps]

Events / ps